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Students’ concept image of rate of change may beniplete or erroneous This paper
reports a pilot study, with secondary school sttglewhich explores the potential of

technology (JavaMathWorlds), depicting a familiantext of motion, to develop students’
existing schema of informal understandings of tdtehange to more formal mathematical
representations Students developed numerous ‘maxfelrate of change in a motion

context which then transferred to serve as a ‘méatetate of change in other contexts

This paper explores the potential of technologfatlitate the forging of connections
between students’ prior informal comprehension famchal mathematical concepts of rate
of change in order to build a more robust conceige Martin (1994), reporting on an
investigation of the use of graphing technolog@sriprove the conceptual understanding
of pre-calculus concepts, states that “technologftes many potential benefits that could
help to improve conceptual learning and mathemlapoaver that last into subsequent
courses” (p 170)

Encouraging students to develop more than a semdrfunderstanding of rate of
change is often difficult (Orton, 1984; Stump, 2P0%tudents may develop an algebraic
manipulative competency but still not understand thasic concepts underlying the
processes they perform Orton claims that studeet® “not at all happy with rate of
change in the context of linear graphs” and halihasited grasp of rate of change” for non-
linear functions He proposes the use of real-$ifiations to stimulate meaningful
discussion Stump also reports that “many studgmtiser study] had trouble interpreting
slope as a measure of rate of change”(p 81)

For many Australian students their first formal hwahatical encounter with rate of
change arises in a study of linear functions wittemphasis on the gradient of these lines
The focus is commonly a decontextualised calcutatisubstituting values (the co-
ordinates of two points on the straight line) imtdormula Sometimes the result of the
calculation is then interpreted in terms of thepteess of the graph of the function Hauger
(1997) suggests that the emphasis, in schoolsgparate straight lines and their properties
limits students’ understanding of rate of changth&oslope of a straight line

Emphasis on calculating gradient using a rule whethrns a single value applicable
across the full domain of a linear function mayitistudents’ understanding of the concept
of gradient Indeed, Stroup (2002) refers to “tk&aordinary difficulty the vast majority
of students have with the traditional approachrgihg to “build up” complexity from the
simplicity of the linear function (constant rat€p’ 206) He asserts that the linear function
is “in the way” and advocates that learners shatidalt with situations where rate varies
The traditional approach to the derivative of action leaves a discussion of the gradient
of a curved graph until after the formal introdoati This approach may overload the
students’ cognitive resources and cause confusiafi, (1985) Tall proposes that an
overview of the idea of the gradient of a geneuaiction graph may be explored using a
calculator or graphing software He advocates 8tatents experience the changing
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gradient of a curve by considering sections whigh‘lacally straight’ seen by zooming-in
on a calculator or graphing software

These concerns and ideas suggest that an invéstigait an alternate approach to
developing a more complete and useful concepttef hchange using piece-wise linear
functions was warranted The aim of the pilot stuthorporating the use of technology,
reported in this paper was to explore the suitgbdf ‘velocity’ as a model to encourage
rate-related reasoning (Stroup, 2002), for midalarg secondary students, to avoid the
constrained thinking resulting from the introduatito gradient via the formula Also
intended was a trial of classroom materials and daliection instruments

This paper draws on data from a classroom studggughe animation software
JavaMathWorlds (MathWorlds) (SimCalc Project, n @his software “provides dynamic,
direct manipulation graphs, piecewise definablecfioms, and animated cartoon worlds to
engage elementary, middle, and high school studentgqualitative and quantitative
reasoning about the relationships among positiefgcity, and acceleration in complex
contexts” (Roschelle, Kaput & Stroup, 2000, p 4Ihe use of piece-wise linear functions
in this environment is consistent with Tall's (198&dvice that students experience the
changing gradient of a curve by considering stiaggctions MathWorlds affords the
solution of problems involving multiple linear segnts These portions of piece-wise
linear functions allow students to observe theatftd changes in gradient

The following sections will cover: some theoretieapects, including connection of
informal to formal mathematical constructs, teclggtrich learning environments,
cognitive residue, multiple representations, aneérgent models; a description of a pilot
program comprising the software and supporting rese data collection methods; and
finally some results and their possible implicasion

Background

In order to begin with a shared meaning of the teoiogy, the following sections set
out the theoretical perspectives which have infartings study

Previous Knowledge

Students bring with them a wealth of experiencehwdte of change in every day
contexts but often have difficulty connecting the@formal understandings of rate of
change with the more formal mathematical approa&fard (1991) advocates that
connecting new knowledge to existing schema wasentkely to result in long term
retention Similarly, Hiebert and Carpenter (1982pouse the view that stronger and more
numerous connections within and between networksntdrnal representations aided
memory and recall It seemed reasonable, then,xmect that connecting formal
mathematical representations of rate of changetudeats’ informal understanding of
velocity could result in increased or deeper urtdading of rate of change, independent of
the use of a formula to calculate gradient, andlttheparameters of linear functions might
be associated with real meaning outside the classroTall and Vinner (1981) define
concept image to be “the total cognitive structingg is associated with the concept, which
includes all the mental pictures and associatefept@s and processes It is built up over
the years through experiences of all kinds, changi the individual meets new stimuli
and matures” (p 152) The development of a roboscept image can be assisted by
providing many different experiences related to atipular concept For example,
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students’ concept of functions can be enhanced ieying functions graphically,
numerically and symbolically

Multiple Representations

Learners perceive aspects of the world around #earinterpret them by attempting to
fit them into their existing schema (Sfard, 1991 koowledge and experience Providing
multiple formal mathematical representations ofoacept such as rate of change allows
students to view the concept from their preferregresentation (Keller & Hirsch, 1998)
facilitating sense-making and ease of connectionh®&r existing schema  Similarly,
Kaput and Schorr (2002) emphasise the importandmlahg the numeric, graphical and
symbolic representations of a function to a sinedasituation in order to deepen
qualitative understanding of the concept of ratel@nge

Technology-rich Learning Environments

Technology is providing ease of access to sevemksentational modes linking real-
world contexts to graphical, tabular and symbatipresentations (Kaput, Noss, & Hoyles,
2001) enabling students to connect their existolgema of informal understandings to the
more formal mathematical representations of a quncén this study, MathWorlds is
examined as a vehicle for providing an enduringdeibetween the informal and formal,
leading to a concept image of rate of change wh&hmathematically correct and
potentially useful for further study in calculus

Cognitive Residue

Such a bridge may be seen as part of the cogniéisielue of this instruction Many
writers (Pea, 1997; Salomon, Perkins & Globers@®91) in the fields of Computer
Supported Collaborative Learning (CSCL) and CompBtsed Learning (CBL) use the
term ‘cognitive residue’ to refer to the after etfe of instructional sequences based on the
use of computers and other technologies such gahigigh calculators and more recently
CAS calculators Their use of the term implies mibv@n just the learning of knowledge
and skills, inferring that strategies and genepgraaches are an effect of exposure to a
technology-enriched instructional sequence Salomioal suggest that “higher order
thinking skills that are either activated during aativity with an intellectual tool or are
explicitly modeled by it can develop and can ba&gfarred to other dissimilar or at least
similar situations” (p 6)

Emergent Models

A parallel to the idea of an enduring bridge betwedbe informal and formal
mathematical representations as the cognitive wesidf technology-rich learning
environment may be drawn with Gravemeijer's (19@Mergent model theory The
emergent model is the final result of a salodynamathematical modeling process in
which, over time, the situated, informal modet®del of'), developed by students to solve
problems directly and uniquely related to specsitciations, are transformed into a more
general modelrfiodel for) used to solve problems in other different, butilsimcontexts
So, for the student, a new mathematical realitrésted

Consequently, in this study, we are looking fordevice of an emergent model for rate
of change in non-motion contexts as cognitive resiebf students’ experience with
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technology-supported multiple representations et@iwise linear functions in the context
of speed

Methodology

The participants in this pilot study were a grouptwelve Year 10 (16 year olds)
students at an Australian secondary school Classrmaterials, assuming the use of
animation software MathWorlds, were based on tlaigeined from the SimCalc website
(SimCalc Project, n d) but, in consultation witie tclass teachers, were adapted to suit the
requirements and limitations of this teaching emwiment

MathWorlds simulates the movement, for examplea Gft in a multi-storey building
This context is experientially real for studentsking to their prior knowledge in the
manner suggested above (Hiebert & Carpenter, 188d, 1991) and manipulation of
representations for a limited number of similartests may build ‘mental pictures’ (Tall
& Vinner, 1981) or ‘models of (Gravemeijer, 1999ese particular contexts, whilst at the
same time creating ‘models for’ other situations

The movement of the lift is also represented bysitipn-time graph, a velocity-time
graph, a numeric display, a table, and an algelvedéc(Figure 1) A powerful feature of
MathWorlds is the interconnectivity of control betn the multiple representations of the
movement of a lift Changes in one representatioth® simulation are mirrored in the
other representations For example, changing theslc representation of the situation
results in corresponding changes in the animatgoaphs and table The movement of the
lift is controlled by its representations and thepresentations of its movement are
controlled by the animation For example, chandhegradient and translating the graph
automatically changes: the speed of the movemetiteofift and the starting point for its
journey; the values in the table; and the parammetkthe symbolic representation

The first named author, working in close consuatiwith two class teachers,
considered vocabulary, suitable scenarios, andiqusvexperience with mathematical
concepts and associated language The contextraiveng lift was favoured to highlight
the connection between the vertical axis of thetjpostime graph and the depiction of the
animation beside it Care was taken to ensurethigascaling and location of the vertical
axis of the position-time graph matched the flomfrghe stylized building in which the lift
moved Four lessons were prepared The first leksmursed on the use of MathWorlds to
represent motion of lifts with position/time grapdrsd tables; the second explored linking
the symbolic and graphic representations in the hMatrlds environment; the third
investigated average rate of change and, the lfisabn considered rate of change in some
different motion contexts Due to timetable consts these lessons, including adequate
time for pre and post-tests, were trialled duringeé two-hour sessions over a four week
period Students’ scripts from pre and post-tesigeevexamined and three teacher-selected
students were interviewed immediately after thetpest regarding their written responses
The researcher and class teacher discussed thegsay the class after each session
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Figurel Screen dump of JavaMathWorlds showing multipleesentations

The pre and post-tests considered rate of changeoirmotion contexts and one non-
motion context Both vertical and horizontal motontexts were included in the tests In
the pre-test, the vertical motion scenario involhaedethered hot air balloon rising and
falling It was intended that this scenario wouklttgllel the vertical motion of the lift in
MathWorlds Items related to this scenario probedrpretation of a position-time graph
representing the movement of the balloon, averadecity, and interpretation of both a
simple and a more complex velocity-time graph Tbezontal motion scenario was the
experientially real situation of a student walkittgschool and was included in order to
establish the informal understandings of velocityught by the students to the classroom
As in the vertical context, the items involved pasi-time graphs, velocity-time graphs
and average velocity However these items were reeaeching requiring description of
the motion shown on a multi-segment position-tintapy, drawing of graphs from a
written description and an interpretation of a eélptime graph representing two walkers
moving at changing velocities Finally, the non-raotcontext described was the fee
schedule for a computer technician Items relatethis scenario were similar to those
asked in the motion contexts with the addition of i'em involving the symbolic
representation

The post-test paralleled the pre-test but usinfgidint contexts and order of questions
The contexts described were the platform of a wiwneasher going up and down a tall
building; a family on a long car trip during thehsol holidays; and the total cost of a
vacuum cleaner with additional disposable dust-b@gsdini, Pierce & Stacey, 2005)
During data analysis like questions were pairecconparison

The next section presents an analysis based orerggigpost-test scripts and some
illuminating student comments A discussion of sgmeéinent items will accompany the
results
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Results and Discussion

In the pre-test each student interviewed gave ritlre incorrect response or no
response to a question requiring students to watktte technician’s hourly rate from a
graph of total cost against time worked Howevertheir interviews immediately
following the post-test these students made conmsnelearly demonstrating rate-related
reasoning For example,

Student A: plus 3 each time for the number ofatslfor each bag

Student B: It goes up by 3 for every bag bought

Student C... the graph will go up $10 for each hour that hetsked so say for 1 hour it would be
up here at 30 — it jumped up to 30 in the firstrhand the second hour it would go to 40

This suggests that these students thought in teffie change in one variable per unit
change in the other variable rather than calcudaigradient using a formula

When looking at the graph of the total cost of awan cleaner with additional dust
bags against the number of dustbags, comments siggea strong connection for
students between rate of change in the motion gbofeMathWorlds and rates of change
in other contexts were made For example,

Researcher: If you saw this graph in MathWorldstwiauld it mean?
Student A: It starts off really quickly and goesvsér and slower
Student B: The lift goes faster first and then slaewn

Student CThe lift started going fast then slower — startettigg slower

It seems the cognitive residue of MathWorlds wdmadel for’ rate of change that
students could use to talk about rate of chandgg@in motion and non-motion contexts

It is interesting to note that only one studentdusee term ‘gradient’ His use of the
term inferred rate-related reasoning rather tharrésult of a formula calculation

Researcher: If you saw this algebraic expressioB f 3n+60 ]in the Algebra window of
Mathworlds what would it mean?

Student Bit has to start at 60 at x=0 and gradient of 3

Researcher: What did that mean ( gradient of 3jraas the lift is concerned?

Student BHow many floors it goes up by each minute

No student performed explicit gradient formula o#dtions; instead they used rate-
related reasoning to discuss the speed of th&lifstudents moved smoothly between the
multiple representations of both motion and nontamtcontexts The class teacher
commented that these students had previously studiear functions in a traditional
manner So, these students could be expected t dexeloped an association between
gradient, rate of change and the calculation ruileio this technology-enhanced learning
environment they demonstrated contextually appabgmate-related reasoning

Analysis of the pre and post-tests includes bospdst shown in Figure 2 The pair of
boxplots on the left shows a comparison of the esttgl percentage for the pre-test with
the students’ percentage for the post-test The gfaboxplots on the right shows a
comparison of the students’ percentage for themohen question on the pre-test with the
students’ percentage for the non-motion questionttms post-test These show an
improvement in the students’ results overall, andparticular, despite all the teaching
being focussed on motion contexts, an improvemanthe students’ percentages for the
non-motion question Interestingly the pair of blatp on the right shows, not only a
marked improvement in students’ scores on the notiem questions, but also less
variation in scores across the class
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Figure2 Boxplots illustrating improvement overall and iommotion items

In the pre-test, students were asked to work oaittézhnician’s hourly rate from a
graph of total cost against time worked Only oh&lent was able to provide a correct
response In a similar item from the post-testiatis were asked to work out the cost per
bag from a graph of total cost against number gsb&tudent responses showed a marked
improvement in facility with this item with 75% abto give a correct response

In the pre-test students were given a symbolicesgon representing the total cost of
a computer technician’s visit and asked for therlyoate Half the students gave correct
responses to this item In a similar item from plost-test, students were asked to work out
the cost per bag from a symbolic expression reptegpthe total cost Student responses
again showed a marked improvement in facility vid@%o able to give a correct response

Analysis of the pre and post-tests results suggbstis these instruments could be
shortened by removing the vertical motion scenam@e using two motion contexts did
not add to the data A closer parallel of the itémasach scenario especially with regard to
the numeric, graphical and symbolic representatiwosld enable more detailed direct
comparison of items The adaptation of the Sim@atgect materials will also be further
refined to allow students to work more independentl

Conclusion

Analysis of the pre and post-tests results , aist in Figure 2, indicates that, even
though the lessons did not include non-motion odeienevertheless, the students
demonstrated an improved understanding of the gdraferate of change in both motion
and non-motion contexts The ‘models of' the motmthe lift developed to answer
questions about the movement of a lift in MathWerighpears to act as a ‘model for’ rate
of change in the non-motion context This sugg#ss the use of the motion context of
lifts in MathWorlds to develop numerous ‘models adite of change has facilitated the
development of an emergent model for rate of changether contexts In this way
velocity has become a ‘model for’ rate of changedlyve problems in non-motion contexts
thus expanding students’ concept image of ratdanhge

This study supports the use of a technology enltale@ening environment to build on
students’ prior knowledge by providing an animatgdyal and symbolic connection to an
experientially real context The results of the tgest and interviews suggest that the
cognitive residue of the learning was an expandedgct concept image of rate of change
Students clearly demonstrated the use of rateecklaeasoning rather than formula
calculations for gradient These encouraging resalficate that further research into the
use of technology to develop rate-related reasosimgrranted
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