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Students’ concept image of rate of change may be incomplete or erroneous  This paper 
reports a pilot study, with secondary school students, which explores the potential of 
technology (JavaMathWorlds), depicting a familiar context of motion, to develop students’ 
existing schema of informal understandings of rate of change to more formal mathematical 
representations  Students developed numerous ‘models of’ rate of change in a motion 
context which then transferred to serve as a ‘model for’ rate of change in other contexts   

This paper explores the potential of technology to facilitate the forging of connections 
between students’ prior informal comprehension and formal mathematical concepts of rate 
of change in order to build a more robust concept image  Martin (1994), reporting on an 
investigation of the use of graphing technologies to improve the conceptual understanding 
of pre-calculus concepts, states that “technologies offer many potential benefits that could 
help to improve conceptual learning and mathematical power that last into subsequent 
courses” (p  170)   

Encouraging students to develop more than a superficial understanding of rate of 
change is often difficult (Orton, 1984; Stump, 2001)  Students may develop an algebraic 
manipulative competency but still not understand the basic concepts underlying the 
processes they perform  Orton claims that students were “not at all happy with rate of 
change in the context of linear graphs” and had a “limited grasp of rate of change” for non-
linear functions  He proposes the use of real-life situations to stimulate meaningful 
discussion  Stump also reports that “many students [in her study] had trouble interpreting 
slope as a measure of rate of change”(p  81)   

For many Australian students their first formal mathematical encounter with rate of 
change arises in a study of linear functions with an emphasis on the gradient of these lines  
The focus is commonly a decontextualised calculation: substituting values (the co-
ordinates of two points on the straight line) into a formula  Sometimes the result of the 
calculation is then interpreted in terms of the steepness of the graph of the function  Hauger 
(1997) suggests that the emphasis, in schools, on separate straight lines and their properties 
limits students’ understanding of rate of change to the slope of a straight line   

Emphasis on calculating gradient using a rule which returns a single value applicable 
across the full domain of a linear function may limit students’ understanding of the concept 
of gradient  Indeed, Stroup (2002) refers to “the extraordinary difficulty the vast majority 
of students have with the traditional approach of trying to “build up” complexity from the 
simplicity of the linear function (constant rate)” (p 206)  He asserts that the linear function 
is “in the way” and advocates that learners should start with situations where rate varies  
The traditional approach to the derivative of a function leaves a discussion of the gradient 
of a curved graph until after the formal introduction  This approach may overload the 
students’ cognitive resources and cause confusion (Tall, 1985)  Tall proposes that an 
overview of the idea of the gradient of a general function graph may be explored using a 
calculator or graphing software  He advocates that students experience the changing 
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gradient of a curve by considering sections which are ‘locally straight’ seen by zooming-in 
on a calculator or graphing software   

These concerns and ideas suggest that an investigation of an alternate approach to 
developing a more complete and useful concept of rate of change using piece-wise linear 
functions was warranted  The aim of the pilot study incorporating the use of technology, 
reported in this paper was to explore the suitability of ‘velocity’ as a model to encourage 
rate-related reasoning (Stroup, 2002), for middle-years secondary students, to avoid the 
constrained thinking resulting from the introduction to gradient via the formula  Also 
intended was a trial of classroom materials and data collection instruments  

This paper draws on data from a classroom study using the animation software 
JavaMathWorlds (MathWorlds) (SimCalc Project, n d )  This software “provides dynamic, 
direct manipulation graphs, piecewise definable functions, and animated cartoon worlds to 
engage elementary, middle, and high school students in qualitative and quantitative 
reasoning about the relationships among position, velocity, and acceleration in complex 
contexts” (Roschelle, Kaput & Stroup, 2000, p  47)  The use of piece-wise linear functions 
in this environment is consistent with Tall’s (1985) advice that students experience the 
changing gradient of a curve by considering straight sections  MathWorlds affords the 
solution of problems involving multiple linear segments  These portions of piece-wise 
linear functions allow students to observe the effect of changes in gradient   

The following sections will cover: some theoretical aspects, including connection of 
informal to formal mathematical constructs, technology-rich learning environments, 
cognitive residue, multiple representations, and emergent models; a description of a pilot 
program comprising the software and supporting materials; data collection methods; and 
finally some results and their possible implications  

Background 

In order to begin with a shared meaning of the terminology, the following sections set 
out the theoretical perspectives which have informed this study  

Previous Knowledge 

Students bring with them a wealth of experience with rate of change in every day 
contexts but often have difficulty connecting their informal understandings of rate of 
change with the more formal mathematical approach  Sfard (1991) advocates that 
connecting new knowledge to existing schema was more likely to result in long term 
retention  Similarly, Hiebert and Carpenter (1992) espouse the view that stronger and more 
numerous connections within and between networks of internal representations aided 
memory and recall  It seemed reasonable, then, to expect that connecting formal 
mathematical representations of rate of change to students’ informal understanding of 
velocity could result in increased or deeper understanding of rate of change, independent of 
the use of a formula to calculate gradient, and that the parameters of linear functions might 
be associated with real meaning outside the classroom  Tall and Vinner (1981) define 
concept image to be “the total cognitive structure that is associated with the concept, which 
includes all the mental pictures and associated properties and processes  It is built up over 
the years through experiences of all kinds, changing as the individual meets new stimuli 
and matures” (p 152)  The development of a robust concept image can be assisted by 
providing many different experiences related to a particular concept  For example, 
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students’ concept of functions can be enhanced by viewing functions graphically, 
numerically and symbolically  

Multiple Representations 

Learners perceive aspects of the world around them and interpret them by attempting to 
fit them into their existing schema (Sfard, 1991) of knowledge and experience  Providing 
multiple formal mathematical representations of a concept such as rate of change allows 
students to view the concept from their preferred representation (Keller & Hirsch, 1998) 
facilitating sense-making and ease of connection to their existing schema   Similarly, 
Kaput and Schorr (2002) emphasise the importance of linking the numeric, graphical and 
symbolic representations of a function to a simulated situation in order to deepen 
qualitative understanding of the concept of rate of change   

Technology-rich Learning Environments 

Technology is providing ease of access to several representational modes linking real-
world contexts to graphical, tabular and symbolic representations (Kaput, Noss, & Hoyles, 
2001) enabling students to connect their existing schema of informal understandings to the 
more formal mathematical representations of a concept  In this study, MathWorlds is 
examined as a vehicle for providing an enduring bridge between the informal and formal, 
leading to a concept image of rate of change which is mathematically correct and 
potentially useful for further study in calculus   

Cognitive Residue  

Such a bridge may be seen as part of the cognitive residue of this instruction  Many 
writers (Pea, 1997; Salomon, Perkins & Globerson, 1991) in the fields of Computer 
Supported Collaborative Learning (CSCL) and Computer Based Learning (CBL) use the 
term ‘cognitive residue’ to refer to the after effects of instructional sequences based on the 
use of computers and other technologies such as graphing calculators and more recently 
CAS calculators  Their use of the term implies more than just the learning of knowledge 
and skills, inferring that strategies and general approaches are an effect of exposure to a 
technology-enriched instructional sequence  Salomon et al suggest that  “higher order 
thinking skills that are either activated during an activity with an intellectual tool or are 
explicitly modeled by it can develop and can be transferred to other dissimilar or at least 
similar situations” (p 6)  

Emergent Models 

A parallel to the idea of an enduring bridge between the informal and formal 
mathematical representations as the cognitive residue of technology-rich learning 
environment may be drawn with Gravemeijer’s (1999) emergent model theory  The 
emergent model is the final result of a salodynamic mathematical modeling process in 
which, over time, the situated, informal models (model of’), developed by students to solve 
problems directly and uniquely related to specific situations, are transformed into a more 
general model (model for) used to solve problems in other different, but similar contexts  
So, for the student, a new mathematical reality is created   

Consequently, in this study, we are looking for evidence of an emergent model for rate 
of change in non-motion contexts as cognitive residue of students’ experience with 
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technology-supported multiple representations of piece-wise linear functions in the context 
of speed   

Methodology 

The participants in this pilot study were a group of twelve Year 10 (16 year olds) 
students at an Australian secondary school  Classroom materials, assuming the use of 
animation software MathWorlds, were based on those obtained from the SimCalc website 
(SimCalc Project, n d ) but, in consultation with the class teachers, were adapted to suit the 
requirements and limitations of this teaching environment   

MathWorlds simulates the movement, for example, of a lift in a multi-storey building  
This context is experientially real for students linking to their prior knowledge in the 
manner suggested above (Hiebert & Carpenter, 1992; Sfard, 1991) and manipulation of 
representations for a limited number of similar contexts may build ‘mental pictures’ (Tall 
& Vinner, 1981) or ‘models of’ (Gravemeijer, 1999) these particular contexts, whilst at the 
same time creating ‘models for’ other situations   

The movement of the lift is also represented by a position-time graph, a velocity-time 
graph, a numeric display, a table, and an algebraic rule (Figure 1)  A powerful feature of 
MathWorlds is the interconnectivity of control between the multiple representations of the 
movement of a lift  Changes in one representation of the simulation are mirrored in the 
other representations  For example, changing the symbolic representation of the situation 
results in corresponding changes in the animation, graphs and table  The movement of the 
lift is controlled by its representations and the representations of its movement are 
controlled by the animation  For example, changing the gradient and translating the graph 
automatically changes: the speed of the movement of the lift and the starting point for its 
journey; the values in the table; and the parameters of the symbolic representation  

The first named author, working in close consultation with two class teachers, 
considered vocabulary, suitable scenarios, and previous experience with mathematical 
concepts and associated language  The context of a moving lift was favoured to highlight 
the connection between the vertical axis of the position-time graph and the depiction of the 
animation beside it  Care was taken to ensure that the scaling and location of the vertical 
axis of the position-time graph matched the floors of the stylized building in which the lift 
moved  Four lessons were prepared  The first lesson focused on the use of MathWorlds to 
represent motion of lifts with position/time graphs and tables; the second explored linking 
the symbolic and graphic representations in the MathWorlds environment; the third 
investigated average rate of change and, the final lesson considered rate of change in some 
different motion contexts  Due to timetable constraints, these lessons, including adequate 
time for pre and post-tests, were trialled during three two-hour sessions over a four week 
period  Students’ scripts from pre and post-tests were examined and three teacher-selected 
students were interviewed immediately after the post-test regarding their written responses  
The researcher and class teacher discussed the progress of the class after each session  
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Figure 1   Screen dump of JavaMathWorlds showing multiple representations  

The pre and post-tests considered rate of change in two motion contexts and one non-
motion context  Both vertical and horizontal motion contexts were included in the tests  In 
the pre-test, the vertical motion scenario involved a tethered hot air balloon rising and 
falling  It was intended that this scenario would parallel the vertical motion of the lift in 
MathWorlds  Items related to this scenario probed interpretation of a position-time graph 
representing the movement of the balloon, average velocity, and interpretation of both a 
simple and a more complex velocity-time graph  The horizontal motion scenario was the 
experientially real situation of a student walking to school and was included in order to 
establish the informal understandings of velocity brought by the students to the classroom  
As in the vertical context, the items involved position-time graphs, velocity-time graphs 
and average velocity  However these items were more searching requiring description of 
the motion shown on a multi-segment position-time graph, drawing of graphs from a 
written description and an interpretation of a velocity-time graph representing two walkers 
moving at changing velocities  Finally, the non-motion context described was the fee 
schedule for a computer technician  Items related to this scenario were similar to those 
asked in the motion contexts with the addition of an item involving the symbolic 
representation   

The post-test paralleled the pre-test but using different contexts and order of questions  
The contexts described were the platform of a window washer going up and down a tall 
building; a family on a long car trip during the school holidays; and the total cost of a 
vacuum cleaner with additional disposable dust-bags (Bardini, Pierce & Stacey,  2005)  
During data analysis like questions were paired for comparison  

The next section presents an analysis based on students’ post-test scripts and some 
illuminating student comments  A discussion of some pertinent items will accompany the 
results   



 440  

Results and Discussion 

In the pre-test each student interviewed gave either an incorrect response or no 
response to a question requiring students to work out the technician’s hourly rate from a 
graph of total cost against time worked  However in their interviews immediately 
following the post-test these students made comments clearly demonstrating rate-related 
reasoning  For example,  

Student A: plus 3 each time for the  number of dollars for each bag  
Student B: It goes up by 3 for every bag bought  
Student C: … the graph will go up $10 for each hour that he’s worked so say for 1 hour it would be 
up here at 30 – it jumped up to 30 in the first hour and the second hour it would go to 40   

This suggests that these students thought in terms of the change in one variable per unit 
change in the other variable rather than calculating a gradient using a formula   

When looking at the graph of the total cost of a vacuum cleaner with additional dust 
bags against the number of dustbags, comments suggesting a strong connection for 
students between rate of change in the motion context of MathWorlds and rates of change 
in other contexts were made  For example, 

Researcher: If you saw this graph in MathWorlds what would it mean?  
Student A: It starts off really quickly and goes slower and slower   
Student B: The lift goes faster first and then slows down  
Student C: The lift started going fast then slower – started getting slower  

It seems the cognitive residue of MathWorlds was a ‘model for’ rate of change that 
students could use to talk about rate of change in both motion and non-motion contexts  

It is interesting to note that only one student used the term ‘gradient’  His use of the 
term inferred rate-related reasoning rather than the result of a formula calculation   

Researcher: If you saw this algebraic expression [ C = 3n+60 ]in the Algebra window of 
Mathworlds what would it mean? 
Student B: It has to start at 60 at x=0 and gradient of 3 
Researcher: What did that mean ( gradient of 3) as far as the lift is concerned? 
Student B: How many floors it goes up by each minute  

No student performed explicit gradient formula calculations; instead they used rate-
related reasoning to discuss the speed of the lift  All students moved smoothly between the 
multiple representations of both motion and non-motion contexts  The class teacher 
commented that these students had previously studied linear functions in a traditional 
manner  So, these students could be expected to have developed an association between 
gradient, rate of change and the calculation rule but in this technology-enhanced learning 
environment they demonstrated contextually appropriate rate-related reasoning  

Analysis of the pre and post-tests includes boxplots as shown in Figure 2  The pair of 
boxplots on the left shows a comparison of the students’ percentage for the pre-test with 
the students’ percentage for the post-test  The pair of boxplots on the right shows a 
comparison of the students’ percentage for the non-motion question on the pre-test with the 
students’ percentage for the non-motion question on the post-test  These show an 
improvement in the students’ results overall, and, in particular, despite all the teaching 
being focussed on motion contexts, an improvement on the students’ percentages for the 
non-motion question  Interestingly the pair of boxplots on the right shows, not only a 
marked improvement in students’ scores on the non-motion questions, but also less 
variation in scores across the class  
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Figure 2   Boxplots illustrating improvement overall and in non-motion items  

In the pre-test, students were asked to work out the technician’s hourly rate from a 
graph of total cost against time worked  Only one student was able to provide a correct 
response  In a similar item from the post-test, students were asked to work out the cost per 
bag from a graph of total cost against number of bags  Student responses showed a marked 
improvement in facility with this item with 75% able to give a correct response   

In the pre-test students were given a symbolic expression representing the total cost of 
a computer technician’s visit and asked for the hourly rate  Half the students gave correct 
responses to this item  In a similar item from the post-test, students were asked to work out 
the cost per bag from a symbolic expression representing the total cost  Student responses 
again showed a marked improvement in facility with 83% able to give a correct response   

Analysis of the pre and post-tests results suggests that these instruments could be 
shortened by removing the vertical motion scenario since using two motion contexts did 
not add to the data  A closer parallel of the items in each scenario especially with regard to 
the numeric, graphical and symbolic representations would enable more detailed direct 
comparison of items  The adaptation of the SimCalc project materials will also be further 
refined to allow students to work more independently  

Conclusion 

Analysis of the pre and post-tests results , illustrated in Figure 2, indicates that, even 
though the lessons did not include non-motion contexts, nevertheless, the students 
demonstrated an improved understanding of the concept of rate of change in both motion 
and non-motion contexts  The ‘models of’ the motion of the lift developed to answer 
questions about the movement of a lift in MathWorlds appears to act as a ‘model for’ rate 
of change in the non-motion context  This suggests that the use of the motion context of 
lifts in MathWorlds to develop numerous ‘models of’ rate of change has facilitated the 
development of an emergent model for rate of change in other contexts  In this way 
velocity has become a ‘model for’ rate of change to solve problems in non-motion contexts 
thus expanding students’ concept image of rate of change   

This study supports the use of a technology enhanced learning environment to build on 
students’ prior knowledge by providing an animated, visual and symbolic connection to an 
experientially real context  The results of the post-test and interviews suggest that the 
cognitive residue of the learning was an expanded, correct concept image of rate of change  
Students clearly demonstrated the use of rate-related reasoning rather than formula 
calculations for gradient  These encouraging results indicate that further research into the 
use of technology to develop rate-related reasoning is warranted  
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