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This paper considers task design related to thengeal understanding of a class of nine-
and ten- year old children. The research was igtedein identifying the principles

underpinning these tasks. A first iteration invalva nationally-recognised sorting task
(National Numeracy Strategy, DfEE, 2000) and a sdaqarincipled task was designed to
delve further into the children’s understandingtog inclusive nature of the definitions of
quadrilaterals. We consider to what extent vandfielevels of geometrical understanding
can be used at the classroom level and raise she isf appropriate tasks for children to
engage with in order to challenge and stimulate thederstanding of geometric definitions.

Understanding of geometric definitions is a compdega to study. Let us offer three
putative reasons why this may be the case. Our@mwient has a great impact on the way
children perceive shapes and it is in this envirennthat children are continually exposed
to shapes that have a horizontal base. An altematigument could be the traditional use
of paper-based technology. Both create prototymbalpes that lead to visual cues being
predominantly used by children. Even when we remitreehorizontal base and rotate a
shape, to say a kite flying, we still view a prgtotal shape (Hershkowitz, 1990).

Another aspect of geometric definitions that compmsuthe complex nature of the
topic is that of the inclusivity and exclusivity definitions. Children find it difficult to
consider that a square is a rectangle (demongirdtainclusive nature of the definition of
rectangles) (Jones, 2000), particularly when thieyfaced with images in and out of school
where what they call a rectangle is, again, a pyptcal oblong (illustrating the exclusive
nature of the definition of oblong: a rectangletisanot a square).

Finally, the large number of attributes that canuled to define shapes adds to the
confusion. For example, we can consider the lepnfttme individual, parallel or adjacent
sides, the size of the interior angles, the ordeotation and the lines of symmetry.

This paper considers how task design can beginetet the needs of children who are
struggling with these concepts.

Theoretical Framework

van Hiele’s (1986) levels of geometrical understagdprovide an overview of
children’s geometrical understanding, which is ftesed in studies in this domain. For
example, Sutherland, Godwin, Olivero and Peel (2082 using Dynamic Geometry
software (Cabri) in their study concerned with pinecess of developing a design initiative
for primary children to learn about the propert#spolygons, drawing explicitly on the
role of the teacher exploiting the dynamic natur€abri. They are particularly interested
in the children becoming aware of the invariantperbies of particular quadrilaterals.
Sutherland et al. found that the majority of cleldrin their studies recognised shapes by
drawing on the strong visual clues as describedain Hiele’'s level 1. They wish to
develop the children’s mathematical understandargss van Hiele’s levels 1 and 2.
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However, we think of van Hiele’s levels as belongito a family of macrolevel
theories, which describe the nature of mankind’swkedge as it evolves over long time
scales, a trait arguably begun by Piaget in hiskveor genetic epistemology. Our focus is
however much more humble. We offer the reader aphetrical microscope with which to
zoom in and in until we see, not the knowledge ahkind evolving over a life span or
beyond, but the meanings that an individual clhsldtruggling to construct at a moment in
time and how those meanings change over hours em gunutes. What you might see
through this microscope is not beautifully orgadisead smooth levels of achievement but
instead noise and inconsistency. We see a childsg&vkRoowledge is in a state of flux and
under constant pressure from outside influencesh@e many structuring resources in the
classroom setting on which we are now focussedaskewhat the contribution of the task
is to this complex and excitingly unsmooth dynamic.

van Hiele gives a relatively minor role ii@tuition in his levels (Fujita & Jones, 2002),
and yet we see intuitions as particularly releanthe immediate meaning-making that
takes place at the micro-level. Fischbein (1994kesaexplicit the place of intuition in
geometry. He explains that “the interactions anaflatds between the formal, the
algorithmic and the intuitive components of a mathgcal activity are very complex and
usually not easily identified or understood.”

Fischbein (1993) blurs the edges of van Hiele'elewand reiterates the complex nature
of geometry by observing that a geometrical figlpessesses a property which usual
concepts do not possess, namely it includes theéamnepresentation of space property”.
Fischbein argues that all geometrical figures dua&acterised by the interaction between
their figural and conceptual aspects, leading éonbtion of ‘figural concepts’. He explains
that with “age and the effect of instruction... thesibn between the figural and the
conceptual facets improve”.

There are few guidelines as to what this instructiould be and more specifically,
how geometrical tasks could aid children in deviglggheir intuition. Freudenthal (1981)
offers a suggestion for how a familiar environmeaty lead to children’s understanding of
geometry. From a very young age, before a chiltble to articulate their thinking, they are
able to grasp space and relations in space byngekstening and moving in space’. The
child undertakes the process of becoming conse@baust their intuitive grasp of space and
during this time verbalisation also occurs, leadingdefinitions, theorems and proofs.
What Freudenthal is unspecific about, howevehaw a teacher can encourage a child to
develop definitions of shapes in this process. éddalthough geometry is now officially
included in the Dutch mathematics curriculum, in@® an area that has been completely
implemented into present classroom practice (vanHiuvel-Panhuizen, 1998).

Methodology

This paper presents part of a wider research groyagich sits within the design

experiment paradigm (Cobb et,&003). Through following a series of featureseir@mt in

all design research, Cobb et @003) propose that design experiments develdptively
humble” theories that target domain-specific leagnprocesses about “both the process of
learning and the means that are designed to sufiyadrtearning”. These theories are built
in a rather pragmatic way, taking an existing tle&oal framework and, through a highly
interventionist experimentation period involvingerdtive design, new theories are
developed through the design and redesign of aectune, a product. It was through the
classroom-based use of a product (which in thig eess a design for a task) within the
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iterative process that children’s definition of dutaterals was explored with the aim that
we would first be able to abstract principles redato the design of a task about geometric
definitions and subsequently propose more geneinciples for task design.

Within this paper one iteration is discussed andciples for another iteration are
considered. Within each iteration there were fieetions:

(1) A design based on the conclusions from the previteuation analysis;

(i) A specific method,;

(i)  The data collection process;

(iv)  Analysis of the data and discussion; and

v) A conclusion drawing out recommendations to beiriéal the next design.

Iteration O was different only in so far as stgpa@s a bootstrapping analysis based on
an already existing nationally-recognised sortagktfrom the National Numeracy Strategy
(DfEE, 2000a) in order to identify the principleshish would underpin Iteration 1.
Iteration 1 involved a second task that was desigioeprovide some insight into the
children’s understanding of the inclusive naturethed definitions of quadrilaterals, thus
further developing the principles.

In preparation for a design experiment, many assiomg must be made about the
starting points, elements of trajectory and prospecendpoints of the learning (Cobb et
al., 2003). To avoid solely playing a ‘mind-gam&/e used a software task [Carroll
Diagram, DfEE, 2000b] recommended by the Nationaimiracy Strategy, which in
England sets out the teaching framework from age ¥4; nearly all teachers in the state
system follow this framework. In light of the adtivon this task, we identified the need to
provide a purposeful task that offered the oppatyuior children to access a wide range of
examples that could be manipulated, and which &tbfer exploration of the properties of
quadrilaterals and the relationships between them.

We built these ideas in to the Iteration 1 taskj@Fé 1), a hands-on classification task
encouraging children to identify the attribute bétsets in an unlabelled Venn Diagram.
The children had access to strips of cardboardssts, Blutak, a protractor and a ruler.
They were asked by their teacher to create quéehdlis using any of the resources and to
place them in the blank Venn Diagram. Once platesl teacher revealed to the children
whether a quadrilateral had been correctly platiedot, the children chose whether to
adapt the shape or move it to a different set,again received feedback from the teacher
on the accuracy of placement. The children wereowaged to create as many
quadrilaterals as they felt were necessary in dalelassify each set. The game concluded
when the children had labelled all sets. Four pairshildren were selected from the
previous iteration to represent a cross-secticattainment. Each pair was video-taped and
analysis was undertaken according to how the @nldonstructed the quadrilaterals, how
they were orientated and how the children percedlaskification.

Construction was expected to be undertaken usipgfatme following methods:

» Arbitrary cutting of a strip/strips to make sides;

« Cutting a strip using somasual clue (no physical comparison with another side);

» Comparisonmade, either cutting more than one piece alongsmiher; folding a
strip into half or quarters; holding an existingesiagainst a new strip and cutting
the new strip;

» Using ameasurementool (ruler or protractor) to assess the sizeidé ®r angle
needed.
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The methods of construction were used as a medoswudsing progressively (Robson,
1993) on the children’s understanding, thus infoignour stance towards the design of the
next iteration task. In this paper, we focus ornthier insights gained from lteration 1,
which we are embedding into the task for Iteraion

Figure 1: The iteration 1 task, Get Sorted.

Findings

It became clear from analysis of the data in lteral that there were several sources
of confusion about the nature of geometric defams. We set these out below.

Instance vs. Class

Several of the children did not identify how diet instances of the same class could
occur. Here, Katie and Callum discuss how two ofggocould sit within one set:

Katie: But then it will be like that one [motions ¢xisting rectangle] though, but
smaller. That would be good. What would you cathdugh? Small rectangle.
Continues to make ‘small rectangle’ by comparing antting strips.

Callum: Yeah, but we could have it standing up.
Katie: Yeah, that way or that way?
Callum: No, keep that like that.

The need to label each instance, rather than #ss tb which several instances belong,

appeared to be part of a more wide-ranging difficéibr the children in distinguishing
between instance and class.

Attributes

The children were concerned with only the basichattes of the shapes of right angles
and the length of sides. For example, Luke and Tised their knowledge of fractions to
create the sides of a square:

L folds one strip in half.
Luke: We need one more [strip].
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T folds one strip in half.

Tom: So we get a square?

Luke: A square ... and we can do them into quarters.
L and T create a square together.

Luke: Get the quarters and put them all together.

The children used onlgomparisonor visual construction techniques when considering
attributes. None used the measuring resourcesr (oul@rotractor) provided. Whilst the
length of sides and right angles are importantbattes, we believe that other attributes
such as the size of the interior angles (other 8) the order of rotation and the lines of
symmetry are also necessary aspects of geomainidarstanding. More generally, we saw
much evidence to confirm Fischbein’s view that ¢hisra tendency for children to focus on
perceptual rather than figural aspects of geomethapes. These findings endorse
Sutherland et al's (2002) research.

Inclusivity

None of the children appreciated the inclusive reatf definitions; they perceived the
sets of the Venn Diagram as discrete and incoyréadtelled the sets similarly:

Irregular Quadrilaterals Oblongs

Figure 2: Typical incorrect labelling of Venn Diagn, Iteration 1.

James and Vinny's discussion is typical:

J takes label and writes OBLONGS, places it inaegtes.

Vinny:  Squares in therd takes label and gives pen and label to V whiesir
SQUARES

James: That's quadrilaterals with no right angles.

Vinny:  I'm not sureBoth laughDon't do it as big.

James:  What could they be? [pause] What wouldcatithem shapes?
Vinny:  No right angles.

James: They're all quadrilaterals.

Vinny:  Yeah.

James: Quadrilaterals that have no right andlesites it on a label
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In general, we saw considerable evidence in sumgddhte literature that has shown the
difficulty that children have with the nature otlasive definitions (Jones, 2000).

Defining

The task did not stimulate the children to defihapes. Rather than making use of the
scope for manipulation built in to the design af thsk, the children created predominantly
prototypical instances, moving them between setgain a correct placement rather than
persevering with the class in each set. This reduih Luke and Tom incorrectly
completing the task very quickly, placing only asf@pe in each set before naming the sets
and completing the task. Harry and Rebecca alsceglane shape in each set before
tentatively naming them, but decided to confirmirth@lso incorrect) thinking by
producing more prototypical shapes:

Harry: Pointing to each subsethey're all irregular shapes, they're all rectasghnd
they're all squares.

Rebecca: We should put some more in, just to check.

We were aware that the task for Iteration 1 fatledout children in the position of
being definers as exhorted by de Villiers (1998).

Conclusion

The modus operandof design research dictates that insights gainaa the previous
iteration are transformed into design conjectueapodied in the design of the next
iteration. We have not yet reached the full embeshitrof the task for Iteration 2. However,
we are able to indicate how the above findingsaiag operationalised:

* In response to the difficulty children encounteneddistinguishing between class
and instance, we intend to offer access to a rafgestances of a definition that
cover the whole scope of the definition. We consdethe approach used in
Dynamic Geometry where the child is able to drdigare through many instances
with the potential that the child may abstract timwariant aspects of the
construction. However, we feared that, when natragging mode, the child would
once more be drawn by the specific instance intfobthem. We therefore propose
to adopt the use of animations that loop continlyotisough the whole panoply of
relevant instances.

* Recognising that children usually fail to attendthe attributes of a shape, we
propose to draw on thi@onstructionis{Harel & Papert, 1991) tenet that technology
facilitates the construction of knowledge througte wf that knowledge (see the
Power Principlein Papert, 1996). Hence, we aim to present thengiss$ attributes
as tools with which the children can build defioiits.

« The inclusive nature of some mathematical defingialso created problems for the
children. One problem is that definitions are tonsoextent arbitrary. Not all
mathematical definitions are inclusive and it igyweasy to generate arguments
even amongst experts (perhaps especially amongstte¥ about whether certain
shapes are special cases of others or not. Wéngeeyer, a helpful affordance of
microworlds with respect to this issue. We beligvat, by building the normalised
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definitions into the model underpinning the micraldothe task can be so designed
as to involve the children in discovering what toenputer knows.

« We are searching for a task design that generatgsoge leading towards the
construction of utility for defining (see Ainleyrd&t and Hansen, in press, for a full
discussion of the two construcfgyrposeandutility). We believe that by offering
the attributes as tools for building, we have anftation for designing a purposeful
task, but at the same time recognise the non-litiviaf such an aim.

We have taken one further step in the process efabipnalising the conjectures
emerging from lteration 1. We are referring to #m@mation of instances to scope the
definition of a class amight-bes in the sense that an instance of the definitioghimbe
represented by any of the frames preserght-besare a series of morphing instances
that cover the whole scope of a definition. In Fegg3, we give an example of a series of
might-bes for parallelogram:

weog)imi] pmuny

Figure 3: Example of a seriesmfght-bedfor parallelogram. Each element of this figureresgnts one
frame in an animation that proceeds in time frofintteright.

We intend thaimight-besshould be built from attribute-based tools, whwé have
labelled must-havesin the sense they are attributes that are regemés within the
definition. For example, one such building blockulebbe “must have at least one right
angle”. The phrasing of thaust-havestentionally foregrounds the inclusive naturetod
definitions. By offering these attributes as builgliblocks, we expect the children to
engage playfully with them, and construct new ustgrdings through their use (see
Figure 4).

Lines of
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Figure 4: Example afhust-havesThe student is able to change the minimum seftinthe corresponding
attribute before using these settings to createniggbt-bes animation.

With these specific embodiments now in place, wedwose to finalising the task for
iteration 2. We will be collecting data for itei@ti 2 during June 2005. As a result, we aim
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to offer specific guidelines about the principles fask design with respect to geometric
definitions as well as at a generic level.
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