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ABSTRACT 

Analogy appears to be one of the most important mechanisms underlying human thought, at 

least from the age of about one year. A powerful way of understanding something new is by 

analogy with something which is known. The research community has given considerable attention 

to analogical reasoning in the learning of science and in general problem solving, particularly as it 

enhances transfer of knowledge structures. Little work, however, has been directed towards its role 

in children's learning of basic mathematical ideas. This paper examines analogy as a general model 

of reasoning and proposes a number of principles for learning by analogy. Examples of analogical 

reasoning in children's mathematical learning are presented, including children's ability to recognize 

similarity in problem structure which was investigated in.a recent two-year study. The proposed 

principles are applied to a critical review of some commonly used concrete analogs and to a brief 

analysis of more abstract analogs, namely, established mental models which serve as the source for 

the construction of new mathematical ideas. 

INTRODUCTION 

It has been argued that much of human inference is basically analogical and is performed by 

using schemas from everyday life as analogs (Gentner, 1989; Halford, 1992). Given that analogy 

is a natural and ubiquitous aspect of human cognition, analogical reasoning would seem to lie at the 

very core of our cognitive processes. It is even used by very young children under appropriate 

conditions (e.g., Gholson, Dattel, Morgan, & Eymard, 1989; Goswami, 1991). Such reasoning is 

also responsible for much of the power, flexibility, and creativity of our thought (Halford & 

Wilson, 1993; Holyoak & Thagard, 1994). 

In 1954, Polya devoted an entire volume to the use of analogy and induction in mathematics. 

While he demonstrated how analogies can provide a fertile source of new problems and can enhance 

problem-solving performance, his ideas were not as widely adopted as some of his other work, 

largely because they were descriptive rather than prescriptive (Schoenfeld, 1992). More recent 

studies however, have given greater attention to analogical reasoning in general problem solving, 

particularly as it enhances transfer of knowledge structures (e.g., Holyoak & Koh, 1987; Novick, 

1990, 1992). While research has also addressed the role of analogy in science learning (e.g., 

Clement, 1993; Duit, 1991; Stavy & Tirosh, 1993), little work has been directed towards its role in 

children's learning of basic mathematical concepts and procedures. The purpose of this paper is to 

examine analogy as a general model of reasoning and to highlight its role in children's elementary 

mathematical learning. 
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NATURE OF ANALOGICAL REASONING 

A commonly cited definition of analogy is that of Gentner (1983, 1989), namely, an analogy 

is a mapping from one structure, the base or source, ;to another structure, the target The system of 
I 

relations that holds among the base elements also holds among the target elements. Normally the 

source is the part that is already known, whereas the target is the part that has to be inferred or 

discovered. An analogy utilizes information stored in memory (Halford, 1992). In this way. a 

model of analogical reasoning shares common features with knowledge-based models of reasoning 

(e.g., Chi & Ceci, 1987). However analogies go beyond the information retrieved because the 

interaction of the base and the target produces a new structure that extends beyond previous 

experience (Halford. 1992). Furthermore. employing an analogy can open up new perspectives for 

both perceiving and restructuring the analog (Duit, 1991). The acquisition of this new structure is 

in accord with the constructivist views of children's learning; that is, learning is an active 

construction process that is only possible on the basis of previously acquired knowledge (Davis, 

Maher, & Noddings, 1990; Duit, 1991). In other words, learning is fundamentally concerned with 

constructing similarities between new and existing ideas. 

ANALOGICAL REASONING IN CHILDREN'S PROBLEM SOLVING 

Analogical reasoning plays a significant role in problem solving. The ability to utilize a 

known problem (i.e .• a base or source problem) that has an identical goal structure to the new 

problem to be solved (target problem) can enhance problem-solving performance (e.g .• Novick & 

Holyoak, 1991). This analogical transfer involves constructing a mapping between elements in the 

base and target· problems. and adapting the solution model from the base problem to fit the 

requirements of the target problem (Novick. 1992). 

In a recent study (English. 1994).9 to 12 year-olds from low. average. and high achievement 

levels in school mathematics were individually administered sets of novel combinatorial and 

deductive reasoning problems presented in concrete and isomorphic written formats. The concrete 

combinatorial problems involved dressing toy bears in all possible combinations of colored T-shirts, 

pants, and tennis rackets. The number of combinations ranged from 9 to 12. The isomorphic 

written examples required the child to form all possible combinations of: a) colored buckets and 

spades, b) colored shirts. skirts, and shoes, and c) greeting cards featuring different colors, 

lettering, and messages. The hands-on deductive problems entailed working through a series of 

clues to determine how to: a) arrange a set of playing cards, b) stack a set of colored bricks, and c) 

match names to a set of toy animals. In the isomorphic written examples the child used given clues 

to determine: a) the locations of families in a street of houses, b) the location of a particular book in 

a stack of books, and c) the identitication of personnel who played particular sports. 

Upon completion of each of the sets of combinatorial and deductive problems. children were 

asked whether solving one set (either hands-on or written) assisted them in solving the other set. 

Children were also asked if they could see ways in which the problem sets were similar. Results to 



215 

date indicate that. on the whole. the older children were better able to identify the structural 

similarities between the problems than the younger children. There were however. several cases in 

which the younger children performed better than ,their older counterparts in recognizing these 
- I 

similarities. This was also the case. for children in the lower achievement levels who often 

performed just as well. if not better. than the high achievers. For example. 9 year-old Hayley, a 

low achiever, stated that the sets of combinatorial problems were similar because "you have to use 

combinations ... you have to do them in a method so you don't get get two exactly the same." On 

the other hand, Nicholas. a high-achieving 9 year-old, commented that the problems were "about 

dressing ... about matching colors." The older children frequently made mention of the similarity in 

the number of sets that had to be matched. For example, 12 year-old Natalie commented that the 

final two written problems (of the form. X x Y x Z) were like the final two hands-on examples 

because they had "three things to match up." 

For the deductive reasoning problems. most children recognized that the problems involved an 

arrangement of items or a matching of names with items·. As Kerry, a low-achieving 9 year-old 

stated, "In the books' problem, you had to stack them and in the cards' problem you had to arrange 

them across." Most children were also able to recognize the similarity in item arrangements. for 

example, "The houses problem is like the cards problem because you have to work out which ones 

go next to each other. And the tower (of blocks) is like this one (stack of books) because you have 

to stack them up in the right order" (Hayley, 9 year-old low achiever). 

Few children however, commented on the nature of the clues per se. such as the extent of 

information they provided, or the need to look for related clues. James, a high-achieving 12 year­

old commented on the fact that there was one clue which provided a starting point: "The five houses 

along the street is like the cards problem because you knew where one was and then you had to 

figure out where the others would go .... there's sort of a trick to it. You got one of them (referring 

this time. to the stacking problems) and you had to figure out which went on top and which went 

below." It is worth mentioning the response of 12 year-old Natalie when asked if solving one set of 

deductive reasoning problems helped her solve the other. She claimed. "I did each (set of 

problems) separately. I didn't relate them." When questioned on the similarities between the 

problem sets, she commented, "You've got to match stuff up with other stuff but otherwise I don't 

relate problems as I don't really look at that SOlt of thing." 

Many studies have shown that novices tend not to focus on the structural features of 

isomorphic problems especially when they have different surface features or when the surface 

details provide misleading cues (e.g., Novick, 1992; Reed. 1987). This highlights the importance 

of clarifying the source structure for children and ensuring they recognize the similar relations 

between the source and target examples. This applies to all areas of analogical reasoning. as the 

following principles indicate. 
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PRINCIPLES OF LEARNING BY ANALOGY 

The following principles draw upon some of Gentner's (1982) criteria for effective analogs. 

Clarity of Source Principle 
i 

The structure of the source should be clearly displayed and explicitly understood by the child. 

For an analogy to be effective, children need to know and understand the objects and relations 

in the base. It is particularly important that the child abstracts the structural properties of the base, 

not its superficial surface details. It will not be possible to map the base into the target, then use the 

base to generate inferences about the target, unless this understanding has been acquired and is 

readily available. 

Clarity of Mappings Principle 

There should be an absence of ambiguity in the mappings from base to target. 

The child should be able to clearly recognize the correspondence between base and target. 

When a base has to be recalled from memory, it should be retrieved in terms of its generalizable 

structure rather than in terms of particular surface details (Gholson, Morgan, Dattel, & Pierce, 

1990). This is particularly important in the development of abstractions. These are formed from 

mappings in which the source, itself, is an abstract relational structure, with few or no attributes. 

Hence if children are to form meaningful abstractions, they must learn the structure of the examples 

they experience. Good analogs can assist here because mapping between an analog and a target 

example encourages children to focus on the con·esponding relations in the two structures (Halford, 

1993). 

Principle of Conceptual Coherence 

The relations that are mappedfrom source to target shouldform a cohesive conceptual structure, that 

is, a higher order structure. 

According to Gentner's (1983) systematicity principle, relations are mapped selectively, that 

is, only those that enter into a higher order structure are mapped. For example, in using various 

concrete analogs to illustrate grouping by ten, attention must be focussed on the corresponding 

relations between the groups of items, not between the materials themselves (e.g., the physical size 

relation between a bundling stick and an MAB mini is not mapped). 

Principle of Scope 

An analogy should be applicable to a range of instances. 

Analogies with high scope can help children form meaningful connections between 

mathematical situations. For example. the "shming" analogy in teaching the division concept can be 

applied readily to both whole numbers and fractions. Likewise, the area model can effectively 

demonstrate a range of fraction concepts and procedures. 

These principles prove to be particularly useful in assessing the effectiveness of the analogs 

(both concrete and mental) used in children's mathematical learning. The analogs serve as the 
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source while the concept to be acquired is the target. The value of these analogs is that they mirror 

the structure of the concept and thus enable the child to use the structure of the analog representation 

to construct a mental model of the concept. Due to space limitations, we present an analysis of only 
I 

a couple of these analogs. Analyses of other analogs can be found in English and Halford 

(forthcoming) and English (submitted). 

CONCRETE ANALOGS 

Colored Counters or Chips 

Colored counters and other simple environmental items, used in the study of number and 

computation, do not possess inherent structure as such, that is, they do not display in-built 

numerical relationships. However they can effectively demonstrate the cardinality of the single-digit 

numbers. In this instance there is just one mapping from the base (the set of counters) to the target 

(the number name). When applied to the learning of basic number concepts, colored counters score 

highly on clarity of source structure and mappings. When used with the appropriate language and 

manipulative procedures, these amilogs can promote a cohesive understanding of single-digit 

numbers and of the elementary number operations. 

The complexity of this analog increases significantly however, when it is applied to the 

development of place-value ideas. In this instance the analog takes on an arbitrary structure in order 

to mirror the structure of the target and, as such, the mappings between the source and target 

become more complicated. This implied structure is of a grouping nature where groups of counters 

or chips of one color are traded for a chip of a different color to represent a new group. This single 

chip represents a number of objects rather than a single object. The analog thus becomes an abstract 

representation because the value of a chip is determined only by its calor, which is arbitrary, and not 

by its size. Because there is no obvious indication of each chip's value, there is not a clear mapping 

from the base material to its cOlTesponding target numeral. In fact, there is a two-stage mapping 

process involved, namely, from chip to color, then from color to value. That is, the child must 

firstly identify the color of the chip and then remember the value that has been assigned to that color 

(the same situation exists with the Cuisenaire rods). This naturally places an additional processing 

load on the child, especially if she does not readily recall this value. Given the lack of clarity in its 

source structure and the multiple mappings required, this material does not seem an appropriate 

analog for introducing grouping and place-value ideas. It appears more suitable for enrichment 

work. 

The counters analog also increases in complexity when it is used as a source for the 

part/whole notion of a fraction. For example, to interpret the fraction of red counters in a set 

comprising 3 red and 5 blue counters, the child must initially conceive of the set as a whole entity to 

determine the name of the fraction being considered. An added difficulty here is that the items do 

not have to be the same size or shape (in contrast to an area model comprising, say, a rectangle 

partitioned into 8 equal parts). Hence the child must see the items of the set as equal parts of a 
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whole, even if the items themselves are unequal. While keeping the whole set in mind, the child 

must identify all the red counters and conceive of them as a fraction of this whole set. Since it is 

difficult to ascertain the whole and the parts, whi~h more or less requires simultaneous mapping 
I 

processes, it is not uncommon for children to treat the red and blue counters as discrete entities and 

interpret the fraction as a ratio (Le., "3 parts to 5 parts;" Behr, Wachsmuth, & Post, 1988). It is for 

this reason that the analog comprising sets of counters is inappropriate for introducing the 

part/whole construct (Hope & Owens, 1987). 

In sum then, colored counters do have considerable scope and can be an effective analog for 

early number and computation activities where there is clarity of source structure and unambiguous 

mappings between source and target When the target concept increases in complexity however, the 

analog also becomes more complex and does not mirror the target as readily as before. The analog 

adopts an implied structure which makes it difficult to form clear and unambiguous mappings 

between source and target. In the case of the fraction example, the analog's structure encourages 

children to focus on the inappropriate relation, namely,. the relation between the two colored sets 

instead of the relation between one colored set and the whole set. This means the analog does not 

establish the conceptual coherence required. However when used in conjunction with other fraction 

analogs (such as area models) and when accompanied by the appropriate language and manipUlative 

procedures, this particular analog can enrich children's conceptual understanding of the fraction 

concept. 

Base-ten Blocks 

The base-ten blocks are probably the most commonly used analogs in the teaching of 

numeration and computation. Because the size relations between the bocks clearly reflect the 

magnitude relations between the quantities being represented, the blocks display clarity of source 

structure and clear mappings to the target concept. The analog also demonstrates high scope since it 

can be applied to a range of instances. For example, when used in conjunction with a place-value 

chart, the base-ten blocks can assist children in their understanding of the numeration of multidigit 

numbers. Theblocks can also demonstrate the regrouping and renaming of whole numbers, and 

hence, can foster conceptual coherence of our numeration system. 

While the blocks represent a highly appropriate analog. their effectiveness will be limited if 

children do not form the correct mappings between the analog representations and the target 

concepts and between their manipulations with the analog and the target procedures. The nature of 

the teacher's and children's explanations during the learning sequence is a crucial component here 

(Fuson, 1992; Stigler & Baranes. 1988). 

While the base-ten blocks serve as an effective analog for whole numbers, they take on an 

added complexity when representing decimal fractions. Changing the values of the blocks to 

accommodate decimal fractions poses a higher processing load for the child. For whole numbers, 

the values assigned to the blocksnol1na1ly remain tixed and children associate a given block with its 
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whole number value. When the blocks take on new values, children are faced with additional 

mapping processes. For example, if the flat block is assigned the value, one unit (or one one), the 

long block is equal to one tenth and the mini, one ,hundredth. This means that, to interpret the 

representation for the number, 1.11, children must firstly identify the flat block as representing one 

whole unit. They must then recall that the flat block is equivalent to ten long blocks as well as one 

hundred mini blocks. Next, children have to perceive the long block as equivalent to one tenth and 

the mini, one hundredth, of the flat block. This process, itself, involves an application of the 

fraction concept. Once the respective values of the blocks have been established, children must 

interpret the decimal fraction being represented. If children do not make all of the mappings 

required, there is the danger that they will interpret the decimal fraction as a whole number, record it 

as such, and simply insert a decimal point. 

The complexity of the mapping processes involved here means that the base-ten blocks can 

lose clarity of both source structure and mappings when used as an analog for the initial 

representation of decimal fractions. Since children have to apply an understanding of fractions in 

interpreting this analog, it would seem more appropriate to employ less complex analogs, such as 

partitioned region models, in introducing decimal fractions and reserve the base-ten blocks for 

application activities. 

We now turn to a brief consideration of more abstract analogs, namely, established mental 

models, which serve as the source for the learning of a new target concept or procedure. 

MENTAL MODELS AS ANALOGS 

The term, mental models, has been interpreted variously in the psychological literature (e.g., 

Johnson-Laird, 1983; Halford, 1993; Rouse & Morris, 1986). As used here, mental models are 

cognitive representations which are active while solving a particular problem and provide the 

workspace for inference and mental operations (Halford, 1993). Because mental models comprise 

representations, and since analogies are mappings from one representation to another, mental 

models can serve as analogies. In using mental models as analogs, children need to explicitly 

recognize the cOlTespondence between their model of a particular mathematical construct (i.e., the 

source) and the targeted constI1lct. 

Consider for example, children's learning of the relationships inherent in our place-value 

system. Children's introduction to multidigit numbers presents a new relational construct for the 

child, namely, the periods within our number system. The important feature of these is that the 

same set of relationships exists in each period, that is, the ones' period comprises hundreds, tens, 

and ones of ones, the thousands' period comprises hundreds, tens, and ones of thousands, and the 

millions' period, hundreds, tens, and ones of millions. This is readily demonstrated on a place­

value chart. A meaningful mental model of the "hundreds, tens, and ones" relations within the 

ones' period can serve as an effective analog for the learning of larger numbers. This involves a 

process of mapping the "hundreds, tens, ones" model onto each new period within the number and 
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assigning the appropriate period name. This is a less complex process for the child than the 

common procedure for reading numerals identified by Fuson, Fraivillig, and Burghardt (1992), 

namely, a reverse right-to-Ieft process in which the child looks along the digits from right to left in 
I 

order to decide the name of the farthest left place and then reads the num her name from left to right 

In sum, a mental model of the "hundreds, tens, ones" relations within the ones' period can serve as 

an effective analog for the learning of multidigit numbers since it displays clarity of mappings, that 

is, it is readily mapped onto each period of a multidigit number. The analog also promotes 

conceptual coherence of our number system because it highlights the important place-value 

relations. 

CONCLUDING POINTS 

This paper has examined analogy as a general model of reasoning and has proposed a number 

of principles for learning by analogy. The role of analogy in children's novel problem solving and 

in their basic mathematical learning was addressed. An analogy was defmed as a mapping from one 

structure, which is usually already known (the base or source), to another structure that is to be 

inferred or discovered (the target). Mathematical analogs range from elementary concrete models 

such as counters, to abstract mental models such as place-value relations and algebraic relations. 

The value of these analogs is that they mirror the structure of the targeted mathematical idea and thus 

enable children to use the structure of the analog representation to construct a mental model of the 

new idea. 

The important feature of analogies is that the structural correspondence between the source 

and target is mapped, not the superficial attributes of these elements. Relations are mapped 

selectively, that is, only those relations that enter into a coherent structure are mapped. One of the 

values of analogies is that they transcend domains which may be very different, apart from the 

relations they have in common. Since analogies focus on common relational structures, reasoning 

by analogy is an important process in children's mathematical learning. On the other hand, analogs 

can often possess inherent or arbitrary strUCtures which can detract from their effectiveness. 

Effective analogs are those in which the child clearly recognizes and understands the structure of the 

source, can clearly recognize the correspondence between source and target, and can make the 

required mappings from source to target. Analogs which are applicable to a range of instances can 

help children form meaningful connections between mathematical ideas. 
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