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Since our conceptual structures are a major faotégarning, it may be hypothesised that
the richer these schemas are the better the Igatimit will result. This paper reports on a
study of students’ understanding of derivative, tHrelthinking they construct. It follows the
progress of two students, James and Bob, and Hescai snapshot of the richness of their
thinking in this area. This is related to a framewof knowing proposed by the authors,
and examples of the possible value of schematenetiility in terms of understanding new
ideas

The notion of schemas has gained considerable guippihe literature as a metaphor
for the manner in which cognitive structures aremfed and mature (Skemp, 1979;
Anderson, 1995). Such schemas are formed as sfidmeriences in a conceptual area
expand, and actions, processes, and objects &egllinto coherent structures (Dubinsky &
McDonald, 2001). It seems to be reasonably evidéat an individual's existing
conceptual structures, or schemas, are a key detanthof ability to understand and hence
make progress in learning, either by promoting estricting the association of new
concepts. The richer the schemas, in terms of phead of the network, the qualitative
nature and the strength of the links between timstdaent parts, the more likely they are
to support such expansion. However, capturing holmemas change in any knowledge
domain is very difficult. The study reported hetiempts to describe the qualitative nature
of the growth of two students’ schematic structw@sounding the concept of derivative.

One key factor built into schemas for a given cphbage the representational basis of
the concept. Representation cannot be divorced fthen process of mathematical
understanding since the ability to represent isliciign learning mathematics. It is not
possible to think consciously about mathematicshout using some form of
representation. For example, symbols (includingdspare used to represent mathematical
objects, processes or structures (i.e. mathemataradepts), diagrams are constructed to
make sense of relationships involved in informaiven in mathematical problems, and
graphs are drawn to provide visual support to ptegseand behaviour of functions.

Research has shown that there is a constitutivatiorkhip between students’
representational abilities and their mathematicatlaustanding and problem solving
proficiency (Cifarelli, 1998; Lesh, 2000). For exale learners’ emerging understanding
can be attributed to their capability to represemroblem in a number of different ways,
allowing them to approach solutions from differg@etrspectives (Sigel, 1999). Studies in
algebra and calculus (e.g., Orton, 1983; Heid, 198&e shown significant improvement
in students’ performance when taught in multipleresentational environments. Based on
a study examining understanding of differentiatidteid’s (1988) investigation also
showed that the performance of calculus students were exposed to meanings and
concepts first, using a variety of representatidoipwed by an emphasis on skills,
performed better compared with students taughhénréverse sequence. Slavit (1996, p.
14) noticed how for 16 year old algebra studengs‘thulti-representational capabilities of
the [graphic calculator] allowed additional aspeifta problem to be quickly analysed in a
‘representationally-connected’ fashion.” Such stsdsuggest that conceptual development
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of students could be enhanced through teachindeanding with multiple representational
perspectives. A suggested reason for this is thaiubli-representational approach may
divert the focus of attention from the representati through the abstraction and
identification of links between representations,tiie concept that it represents (Noble,
Nemirovsky, Wright, & Tierney, 2001). Thus, the rfmation of integrated multiple
representations for the same phenomenon might esg®umeaningful understanding,
enhancing representational fluency (Lesh, 200@)astto be recognised though that student
use of multiple representations may not be autamgbr example, Crowley (2000) noted
that graphical and symbolic representations wetdinked by students unless they were
explicitly asked to do so, and Weigand and WelB&0() found that students often lacked
the patience to read, interpret and reflect orechffit representations. Further, Kendal and
Stacey (2002) found that only the most capableestisdachieved the goal of developing
facility with numerical, graphical and symbolic repentations of functions and
derivatives.

In this paper, we characterise a snapshot of twaesits’ mathematical knowing vis-a-
vis their representational abilities. This charastgion is based on the previously
described Representational Framework of Knowingivaére (delos Santos & Thomas,
2003, p.326). Presented in matrix form, this framdwmaps students’ dimensions of
knowing across their representational prefereneaf) each cell describing possible
representational abilities, as they engage in sglproblems. The dimensions of knowing
are categorised into procedure-oriented, procdssted, object-oriented, concept-
oriented, and versatile, characterised accordinglifferent modes of representations
(symbolic, graphical, and numeric). Due to spagcmitéitions we present here only
descriptions for the last two dimensions of knowing

« Concept-oriented knowing the level where the learner has created a ‘biggeture,” comprising
schemas containing procedures, processes, andohbjeanged in a relational manner. The learndr wit
concept-oriented knowing can provide answers to @drjain procedures and processes work, is able to
create conceptual links across representationsrelade process and object tools used in problem
solving.

e Versatile knowing- the learner has sufficiently wide range of thierftypes of knowing to enable choice
in problem solving, along with sufficiently devekgh metacognitive ability to choose an appropriate
perspective at any given point in time, and thditglio move fluently between the chosen perspestiv
as required.

Method

This research comprised case studies of James @n@pBeudonyms), two male Form
7 students (aged 18 years) from a high-level secamomic private school in Auckland,
New Zealand. The analysis of the two students’kihgp and understanding forms part of a
study of the understanding of derivative which taalce in four schools where the
teachers agreed to ‘integrate’ graphic calculabortheir teaching of calculus. From the
student volunteers three or four students from esatiool were selected as representative
of high-, mid-, and low-achievers, using a pre-tédte two high-achieving students
described here were interviewed before and afterimbervention, which comprised a
module of work on derivative using TI-83 calculatoAfter the module, a post-test was
given followed by the post-intervention intervieivhe pre-intervention interviews were
video-taped, while the post interviews were audijped, and both were transcribed and the
data analysed, together with the test resultsdtiitian, there is analysis of concept maps
prepared by the students (considered to be annakigation of conceptual schemas) and
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interview data, including interpretation of familiand unfamiliar symbolisations related to
derivative. The two students were taught by a teaclery experienced at ‘integrating’
graphic calculators into her teaching. She hasomgtbelief that an emphasis on multiple
representation, supported by the use of the grapdliculator in teaching and learning
provides better opportunities for conceptual lezgni

Results and Discussion

On the pre-test James obtained 51% and Bob 58%s(akerage: 34.8%), while in the
post-test, Bob got 77% and James scored 76% @l&sage: 51.2%), placing them among
the top three participating students in their daiswclass. In view of this we expected them
to exhibit evidence of relatively rich schemas #arivative. What we found from the
interviews is described below.

The Concept of Derivative

There was some evidence from the students that twemceptual structure for
derivative was changing, even during the eight wesfkthe study. This was inferred from
the differences in the first and second intervieaval the concept maps. In the first
interview Bob was unclear on the connection ofdbevative to gradient:

B. I don't actually know, we haven't been taughy i that, but it comes back to if you've goor

you've got a function, perhaps a functionfoin terms ofx, and perhaps it's used for reasons |
don't actually know, but the gradient comes frond eomes from beingand that comes from...

And immediately after this comment he resorted pvacedural explanation of how to
find the derivative:
B. So what you are basically doing is you takepghwer, and then you multiply, you take turn from

[sic] the coefficient the number that theyets multiplied, then you subtract 1 from the dé the
power. ...It's the equation or function you work eviten you want to find the gradient, the original

function. So the trick that | remember was...if yant the function ok is axb, then the derivative

of that ishax"""...that's sort of what | remembered about derivatives

At this point, during the first interview, Jamesaldescribed derivative in a manner
betraying a procedural tendency, and a lack ofcaiceptual understanding:

J. Derivative of a function, you get...after you diffntiated?...and you differentiate by first

principles and you can proceed by rule...and magicatl know that that way...when you derive

something, you will get the gradient but | can'tnember the...there is a pretty good reason...there
is a reason behind everything.

In their responses both seemed to view derivatige aafunction obtained by
differentiation, and subsequently both showed neaisle differentiation skills. However,
they did not elaborate regarding different repres@nal modes. They may have had some
mastery of differentiation procedures and an obpeented view of derivative, but their
conceptual understanding had not yet matured. kample, though James knew some
elementary rules of differentiation, and knew thlativatives can be obtained by first
principles, he was limited to a description of agd features of the first principles
expression, and could not correctly recall it, sgyihat “it's all overx” and that the limit
was X approaching zero.”

In contrast, when James and Bob were asked, isgbend interview, to explain their
understanding of derivative, they gave the follaywasponses:
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J:  Well, derivative is sort of like ...it is the gtapf the gradient of this other graph...I think it's
more a fact that it's the gradient at a given poimtthe graph. That makes more sense when | think
about it. So, yeah, but the graph gets you jusbfathese with the correspondirgy...makes it a lot
easier to read. ...derivative of a function you gefterayou differentiated. You differentiate by first
principles, and you proceed by rules.

B: The first derivative...is that how much of the djent of that tangent to that point is. So, if you
draw a straight line through that point with thedjent equal to it [the derivative], that will beet
gradient of that line...By doing thproper process...you take the limit of the gradient...[starts
describing the formulation of first principles]...ttahow we worked out the gradient at that very
particular point. Then we were taughtdbeat which was to play with powers [and demonstrated
the rule for the derivative of"—italics added]

Both students relate derivative to graphs, pasditylto the gradient of a tangent ‘at a
given point on the graph’ and ‘to that point’. Suahpointwise approach has been
characterised by Thomas (2005) as a process pérspeln turn, their description of
derivative has both a graphical basis and an apitepalgebraic component. They both
presented a derivation of the gradient (derivatiwan first principles, and offered another
method to obtain the derivative ruleshéat,as Bob describes it). While low-achieving
students may describe derivative in a primarilyceaural manner, using only a symbolic
representation (delos Santos & Thomas, 2003), thesestudents have demonstrated a
more complex description, employing several repregmnal perspectives and they
appeared to be using these as cognitive tools. Toestituted the definition of derivative
within both the graphic and the symbolic modes, @®scribed derivative as an object (the
gradient of a point) that could be seen and thoaggtaphically, and as a process, through
its first principles derivation using symbols ansl application to particular points. These
were underpinned by relevant links between the gg®a@nd its graphical representation.
Moreover, in both interviews, they appropriatedtaro crucial interpretation of derivative,
namely as a rate of change and/or a function @tfits

J1: They're all functions in their own respect...lt'sate of change. J2: ...this is the rate of change
with respect tgy, which is the same as the gradient.

B1: ...involves how much things change over a peobiime...there’s a rate of change. B2: ...this

one is the rate of change, and it's also the direa

What is evident in their responses is not justrtfaility in describing derivative using
symbols and graphs, but also the links they havetbuattribute meaning for derivative. It
seems that the graphical representation has sewvexd cognitive tool in building a link
between representations, and hence a multi-repiesggaTal perspective of derivative.

Changes in Concept Maps

The changes in James’ and Bob’s conceptual undelisg of derivative and
differentiation between the two interviews desaliladove is supported by their respective
concept maps of derivative and differentiation (Begures 1 and 2). In his first concept
map, James’ presentation of ideas was linear, aabcbmpartmentalised and hierarchical,
with function on top, differentiation executed domard and anti-differentiation returning
to the function.

The second concept map was transformed into alairéorm, with function in the
centre and other ideas emanating from it. He wasyekier, quick to note that the
derivatives are also functions, seemingly emphagighat the centre refers to a specific
function, and that the circular map is embeddefhmily of functions. Bob’s first concept

380



map was more of a collection of propositions, whics transformed into a more complex
map with web-like links centring on the idea ofidative. Their second concept maps still
contain symbols, and graphically-based ideas ss@radient, turning point and concavity,
but are richer in terms of links to concepts sushae of change, and integration. These
qualitative differences in their concept maps appea indicate both growth and
transformation of their continuous conception ofivigive. A limitation of these maps is
the failure to have the links labelled. Thus in® possible to differentiate qualitatively
between, say, a link from derivative to rate ofraf@that was thought of as “is a” (object
link) and one that was “is used to find” (proceduirk).

Figure 2. James’ first and second interview derivative cohcegps.

Using the Rich Derivative Schemas

One of the expected benefits of a rich schema ynpamt of mathematics is that it is
more readily extensible. When new ideas, possigyasented by unfamiliar symbols or
contexts, are encountered they are more easilyndat@d. One of the methods we used in
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this research was to present the students withlilansiymbols for derivative in either less
familiar or unfamiliar contexts to see their reantiExamples of these symbolisations were

d(&
—g‘)’:) f(f'(x)), and f'(f'(x)). For the first symbol, during the second intervidab

said “that is the second derivative and that is much the gradient of the function is
changing “ and James called it “the second dexigadif the functiory”. They were both
immediately able to allow the process to operatéhenderived function, and to link it to

2
%. When James initially tried to interpret the megnof f(f'(x)) he displayed the
X

ability to think of the symbolf'(x) as an object, which he described as the derivative
function. He read the symbol as “the first functiohthe derivative function.” In his
attempt to describe what the symbol meant, he asggecific family of functions of the
form f(x)=x". His work, where he used (x)=x? obtained f(f'(x))=(2x)*, and
worked from there, is shown in Figure 3.

Figure 3.James’ working onf (f'(x)), by-hand and on the GC.

He then picked up the graphic calculator to grdph resulting functions saying that
“It's going away...it's always gonna be steeper thiais original function...it's gonna be
steeper...it's also gonna be concave upward.” Aftames time, while comparing the

algebraic results with the graphs, he generalised-dsult tox"x" ™", recognisingn®n as
always even. Bob, however, immediately formalidesiriotation, describind (f'(x)) as a
composite function, and worked on it as such: “th#te tangent value of the similar
function on the gradient...it is the result you geni...the functiorf of the gradient of the
derivative of that function.” Though the responsergls vague, he demonstrated how to
obtain the result using a specific functioh(x) = x*, “if we take f'(x)=2x, you'll end
up...to 4x>.” When asked what the significance of the symbphe replied “to generate a
new function. That's what | see from it.” Thoughttbdames and Bob saw the symbols as a
composite function, Bob is more locked into a pssceiew, whereas James went further
and was able to generalise the outcome from theepsy symbolising it and describing the
result as the generation of a new function. Agaimat appears to be interesting here is the
way their attempts to make sense of the symbolsi®mg several interconnected
representations. They were able to relate the sigbovords describing concepts, and to
others that were graphical in nature, namely tangad gradient. James in particular was
able to use the graphic calculator to reason frgraphical perspective.
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When asked to describ&’'(f'(x)) James said “that does imply second derivative”.
Hence instead of applying the composite functiomking he had used only seconds
previously he saw this as the second derivafiVéx) . This could be the result of a strictly
linguistic interpretation of the symbolism. Readihi{x) asf-dashed ok, may cause one
to read f'(f'(x)) asf-dashed of-dashed of. This in turn leads to James statement that
“It's the derived function of the first derived fation.”, and hence the second derivative.
When asked about'(f’(x)) Bob responded “That is yet another one... yo&lwmrking
out the gradient of the value, which is equal te gradient when you've got a number
which isx...in a circle, which | don't actually think it mesa..you can definitely evaluate it
the number | don't think it means much.” Clearlywa&s confused, and not able to apply
his understanding of composite function to this lsghsm.

Approaching Versatility

Both these students have moved from a mainly puoeddoerspective to a more
concept-oriented view of derivative. They have @ased the number of links in their
derivative schema, particularly with respect toreéased representations. However, while
they have relatively rich schemas of derivativet ten be described asncept-oriented-
knowingin our framework, they are not ye¢rsatilein their conceptions. One reason may
be that a possible contributory factor in the &pihf both students to develop a conceptual
understanding of derivative, namely th@ireference for thinking graphicallymay be
holding them back. A feature of versatile knowisghe ability to control perspectives and
to move seamlessly between representations as dmah wequired in mathematical
thinking and problem solving. When asked for the o$ derivative, for example, Bob
pointed out the problem of “looking for the poirftaominimum of something, by finding
the minimum of acurve that models the situatioand evaluating the minimum needed.”
With reference to the curve, he described thatoitldt be done by “solving for the
derivative equal to zero,” and started to deschidw “that’s the turning point.” He further
explained how “that [the turning point] tells youhether it's a maximum or a
minimum...by checking the derivative on either sidesée if the sign [of the derivative]
changes from negative to positive.” Such commemdsvsa procedural orientation but also
demonstrate how the decision-making part of theblpra is linked to a graphical
interpretation of results.

James, in describing turning points, explainedenmnts of mathematical ideas, not just
procedures, that “you have to investigate becaiggeis zero. So, investigate the sign of
f'(x)...if the sign is positive here, because the signdeeasing and [referring to the other
side of the turning point] decreasing, getting mame more...cause it is zero here, it gives
us a turning point...it implies a positive on thidesi’ However, his view is still graphically
oriented. This was also true when he was queriedtaieal-life applications of derivative,
he replied “... sort of gotta think of graphical.’hdaat another point in the interview, he
commented that “I think algebraically, using grapimsl stuff...and answers algebraically
using the graph really comes in very handy.”

It is not possible to ascribe the positive charnigethinking of Bob and James in this
shapshot to any particular item or activity. ClgaHe growth of schemas is organic and
affected by many variables. However, both JamesBaidhad used the GC in a number of
ways. Bob said he used it to check answers, awd e little programs, including one for
a parabola. He felt that it helped him to “get &dryepicture of it sometimes through the
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graph...See what's actually happened, why it happanddow it happened.” When asked
if the use of the GC by the teacher helped him tstded better Bob replied “In terms of
understanding | think it has helped...it allows usé® what the answer is.” However, he
had some reservations on the GC use, noting thatduld possibly make me lazy with
working pressing buttons, getting the calculatoddoit so forget the working out”. It may
be that the use of the GC was a factor in theigmass, and if so this is likely due to teacher
privileging (Kendal & Stacey, 1999) of GC use bgitlexperienced teacher, and the multi-
representational approach she adopted with the B@wvever, results on this are
inconclusive and further exploration of any linkégjuired.

References

Anderson, J. R. (1995Cognitive psychology and its implicatiorfsourth edition). New York: W. H.
Freeman & Company.

Cifarelli, V. V. (1998). The development of mentapresentations as a problem solving activiburnal of
Mathematical Behaviour, 12), 239-264.

Crowley, L. (2000)Cognitive structures in college algebfanpublished doctoral dissertation, University of
Warwick, UK.

delos Santos, A. G., & Thomas, M. O. J. (2003).rBspntational ability and understanding of derixatin
N. A. Pateman, B. J. Dougherty & J. Zilliox (Ed$ypceedings of the #7Conference of PMEVol. 2,
pp. 325-332). Honolulu: University of Hawaii.

Dubinsky, E., & McDonald, M. (2001). APOS: A consttivist theory of learning, In D. Holton (EdThe
Teaching and Learning of Mathematics at Universigwel: An ICMI Studypp. 275-282). Dordrecht:
Kluwer Academic Publishers.

Heid, M. K. (1988). Resequencing skills and consdpt applied calculus using the computer as a tool.
Journal for Research in Mathematics Educafiv® 3-25.

Kendal, M., & Stacey, K. (1999). Varieties of teaclprivileging for teaching calculus with compuédgebra
systemsThe International Journal of Computer Algebra in thi@matics Education,(8), 233-247.

Kendal, M., & Stacey, K. (2002). Teachers in trdosi Moving towards CAS-supported classrooms.
Zentralblatt fur Didaktik der Mathematik, &), 196-203.

Lesh, R. (2000). What mathematical abilities arestmreeeded for success beyond school in a technology
based age of information? In M. O. J. Thomas (Edrpceedings of TIME 2000 an International
Conference on the Technology in Mathematics Edocdfip. 73-83). Auckland, NZ: The University of
Auckland & AUT.

Noble, T., Nemirovsky, R., Wright, T., & Tierney,. Q2001). Experiencing change: The mathematics of
change in multiple environment¥ournal for Research in Mathematics Education(13285-108.

Orton, A. (1983). Students’ understanding of défgiation.Educational Studies in Mathematics, 285-
250.

Sigel, I. E. (1999)Development of mental representation: Theories @pyulications.New Jersey: Lawrence
Erlbaum Associates.

Skemp, R. R. (1979)ntelligence, learning and action—A foundation fbeory and practice in education.
Chichester, UK: Wiley.

Slavit, D. (1996). Graphing calculators in a “hylralgebra Il classroontor the Learning of Mathematics,
16, 9-14.

Thomas, M. O. J. (in print) Conceptual represeotatiand versatile mathematical thinking (Proceedinfg
ICMI-10), Copenhagen, Denmark: ICMI.

Weigand, H-G., & Weller, H. (2001). Changes of wogkstyles in a computer algebra environment—The
case of functiondnternational Journal of Computers for Mathematit&larning 6, 87-111.

384



