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CONCEPTS AND CONTEXTS IN LEARNING MATHEMATICS 

DIANNE TOMAZOS 
.Murdoch University 

Modern primary mathematics curricula explicitly aim to develop children's understanding of basic 
. mathematical concepts, in contrast tathe more traditional rote learning of procedures. However 
there has been continuing concern· that many children. still do not achieve an qcceptable level of 
understanding of these mathematical concepts (lnd most seem to hav~ difficulty generalising their 
understanding to relevant contexts. 
Aninvestigation of the mathematical understanding oftweive students during their transitionjrom 
prim~ry to secondary school suggests thq,t. there may. be little educational value in basing .. 
curricula on a presumed common learning hierarchy of concepts within ntathematicswhich canbe , 
transferredto the learners' minds through a controlled sequence of learning experiences. The 
conceptual understanding ·that students were able to demonstrate (though quite limited) revealed 
that their mathematical conceptualisations often _ consisted· of unique. interpretations associated 
with personally perceived contexts, rather th~n common and clearly recognisable generalisations. 

For many years the development and modification of primary mathematics curricula and teaching 
methodologies have been explicitly aimed at facilitating children's understanding of basic mathematical 
concepts (Ellerton & elements 1988), In Britain, the Cockcroft Report (Cockcroft 1982), which has also 
had wide influence in Australia, .particularly drew attention to the ·need for a detailed and careful 

. approach to teaching mathematics in the early years "in order that children may develop confidence and 
understanding" (p83). -. 
. In much of the related documentation, the term concept ,is used in such a way as to imply that there 

are identifiable entities within mathematics itself which can be transferred to the learner's mind in a fixed 
learning sequence appropriate to variousstages of development. If properly taught and understood these 
concepts then are presumed to become accessible to the learner as part of a total. mental mathematical 
construct, the characteristics of which should be similar among successful learners of mathematics. 

The child's level of understanding of a concept depends upon the quality ,extent andtonnectedness 
of verbal (written and oral), concrete, pictorial and symbolic forms of representation.(Western 
Australian Ministry of Education 1 989 p23) .. _, . 

Cl earI y the intention has been to emphasise the teaChing of mathematics in a meaningful way withthe 
child actively making sense of theideas presented in contrast to the more traditional approach where rote 
learning of procedures constituted a major focus of classroom practice. However, the frustration for many 
teachers who seriously attempt to teach conceptual understanding is that children often appear to have 
great difficulty, riot only in developing an understanding of these concepts initially, but in maintaining 
their understanding during later leaming stages and, more particularly, in generalising the concepts to 

. what seem obviously related applications and contexts (Hart 1989; Swan 1990). , 
The consistency of these difficulties in learning mathematics suggests the need to question -the 

assumption that it is possible· to' . identify a hierarchy of 'concepts' within the discipline whic:h is . 
appropriate to the learning sequence of all individuals. Indeed Ernest (199l) and Sierpienska (1990) 
argue strongly against this notion and support the proposition that conceptual understanding in 
mathematics anses out of the personalised and idiosyncratic sense and meaning the learners assign to the 
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. contexts of use to which they are exposed, suggesting that a well defined common learning route through 
sequentially ordered mathematical 'concepts' of increasing difficulty cannot be· pre,..determined. 
Kameenui and Griffin (1989) also question the educational appropriateness of focusing on mathematical 

. 'concepts' rather than the unique contextual associations they believe each individual student intuitive'ly 
develops during early learning experiences. 

Clai-ke's (1989) findings provide some research support for these ideas. His intensive study of the 
mathematical behaviour of ten students during their transition Jromprimary to secondary school revealed 
that the mathematical behaviour of the students was highly idiosyncratic and dearly involved . complex 
interactions between students and their perceptions of·the learning environment as well as important 
social factors. All students were in the same classroomdul"ing Year Seven and Year Eight and therefore 

. weree:xposed to the same mathematical experiences at school, and yet each had deveJopedaunique 
perspective .. and exhibited widely. differing characteristics in their approach to understanding 
mathematics. Clarke· noted that. any explanation of these differences must accommodate "the essential 
individuality of the learning process" (Clarke 1989 p335). .. . . 
. 1'bis paper further explores the individuality of students' mathematical conceptualisations with a 

particular focus;on sfudents' ability tocontextualise the basi€ number 'concepts' introduced early in 
prilllarYschool and its relationship to understanding later more abstract ideas. Interview data obtained 
from students at the end of their primary schooling have been examined and aspects of the students' 
conceptualisations of number operations are reported and discussed. The implications for primary 
curricula design are also considered. 

o 

SOURCE OF mE DATA 
The data reported in this paper were obtained during interviews carried out as part of an investigation into 
,the mathematical understanding and attitudes of students during their transition from primary to 
secondary schooling (Tomazos 1991). At the end of 1990 all 216 Year Seven students at nine 
metroPQlitan primary schools in Western Australia were surveyed using a written questionnaire to 
determine their attitudes to the main subject areas. From the data obtained; a number of students were 
identified as. having exhibited very· strong feelings, both negative and positive,. specifically towards 
mathematics. Of these students six girls and sixb()ys were chosen, with three of each ,gender showing 
very positive responses and three of each gender showing very negative responses to mathematics .. 
,The twelve students were interviewed for approximatelyforty minuteson two occasions, once at the 

end of Year Seven primary school and once midway through Year Eight, their first year of secondary 
schooling. Students were questioned about their pe'rceptions of and attitudes towards mathematics and· 
th~ir responses were sought (using a clinical 'interview approach) to a range of mathematical items 
designed to examine the students'competence with and understanding of fundamental number operations 
and.relationships.The purpose of the original study was to investigate possible relationships among 
SQld~nts'gender, their perceptions and understanding of mathematics, and their affective responses to it. 

Because the research focus had been on finding similarities in mathematical behaviours, much 
intere~ting data which clearly supported Clarke's (1989) findings that students' mathematical behaviour 
was highly idiosyncratic had to be set aside at the time. It is largely these data whithare now reported 
an~ discussed in this paper. . . 

REPORT AND DISCUSSION 
Children are generally introduced to the'b~sic· number. concepts' during the first years of schooling 
through whole number counting activities and the simple combining and separating of sets, extending to . 
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multiplication (usually as repeated addition), then division (often in the context of sharing). At some 
point in these first few years children are exposed to the symbolic representations of these concepts and 
are usually asked to practise computations using the symbols alone, initially with one digit whole 
numbers, then (in line with the hierarchical structure of the syllabus) with increasingly larger and more 
complex numbers at each year level, as new 'concepts' (eg 'place value', 'decimals' ete) are introduced. 

Almost all of the items presented in the interviews required application of various number concepts 
specified in the Western Australian primary mathematics syllabus. Some of the items were presented to 
the students as decontextualised symbolic representations of operations and students were asked to 
mentally calculate the items if possible, explain their processes and describe an appropriate context. Ten 
items included large or more complex numbers (see Appendix A) but would be qUite easy to calculate 
using simple informal mental strategies based on conceptual and contextual understanding ... 

However, most students actually relied solely on using the standard written algorithmic procedures as 
their preferred mental method,which involved a very complicated mental process of visualising the 
numbers, re-arranging them vertically and then mentally performing the steps involved. While only 24% 
of the attempted items were completed using mental strategies based on conceptual knowledge, the 
success rate for items completed in this way (68%) was consistently higher than for items in which a 
complex mental'written' procedure was attempted (success rate 55%). . 

The difficulty here is that when children do manipulate numbers successfully using the standard 
procedures, it is impossible to make valid inferences about their conceptualisations of the numbers or the 

. operations involved, although assumptions are often made in the classroom. It would be very easy to 
assume, for example, that if students can 'do' 15.01 + 14.99 successfully, they must have a conceptual 
understanding of decimal numbers and that their conceptualisations of these are similar to all other 
successful students. Certainly this assumption could not be supported by the students in this study. While 
the overall success rate for this item was 80%, 'none of the students were adequately able to explain the 
meaning of 0.5 or the difference between 0.09 and 0.1 (presented elsewhere in the interviews) even 
though by Year Eight most students could say thatthe former was the same as a half and 0.1 was larger 
than 0.09. The actual explanations offered revealed a wide range of conceptualisations and personalised 
perceptions of decimal fractions, none of which could· be interpreted ~s a complete, or even partially 
complete mental concept for decimals, and differing· sufficiently from one another to add support to 
Ernest's (1991) beliefs about the way in which conceptual understanding develops in mathematics. 

Ernest (1991 p241) -defines the term concept in two ways, firstly in its narrow sense as a simple 
unitary mental object which can be thought oLas a single item or idea, which would only involve simple 
acts of discrimination. For instance understanding a concept for 'water' in this s~nse would require the 
recognition of objects which are "water"and objects which are not. A second broader use of the term 
'concept' involves a much more complex mental structure which consists of a number of the simpler 
concepts as well as the. relationships between them. A concept for 'water' in this broader sense might 
involve a wide range of mental connections and· interrelationships with related conceptual structures 
associated with 'rain', 'ice', 'life', 'chemistry', and 'fire', to name but a few, and would arise out of the 
personalised contexts, experiences and purposes associated with water up to that point in a person's life. 
While many of the mental constructs for 'water' may well be shared with others, it is difficult to conceive 
of a person learning or understanding this complex personalised conceptualisation of water as a complete 
mental entity of meaning., developed by means ofa conceptual pathway common to all learners. 

And yet, while most mathematical 'concepts' discussed in the educational literature associated with 
curricula materials clearly appear to fall within this second broader definition of the term, it is assumed in 
these curricula that it is not only possible to identify within mathematics suitable discrete conceptual 
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'chunks' which can be conveyed intheir entirety to the learner, but that there is a recognised sequential 
itinerary of learning stages appropriate for all students into which these conceptual 'chunks' may be 
slotted. In contrastto this Ernest(1991) claims that "a learner's use of a concept must necessarily be 
within some context, so the concept is linked to its contexts of use" (p240) and that the learner's "grasp 
of a concept grows according to the range of contexts of use that are mastered;'(p24I ) during a learning 
process in. which the learner idiosyncratically perceives and attends to persomJ.lly chosen significant 
events and relationships. Thus the idea of two I~arners understanding the same concept can only be ' 
contemplated in terms of the similarities of their behaviour in response to a particular mathematica~ 
situation or context. Because of the highly personalised nature of their conceptual structures,' another 
seemingly siinilar mathematical context may well elicit entirely different and quite divergent behaviour 
from the two learners. ' 

Certainly the students interviewed demonstrated that context could be a powerful determinant of 
success when standard computational procedures were forgotten. Penny (12:3), for example,had 
previously mentally calculated 150r + 1499 using a standard procedure but could see no way of dealing 
with 15.01 + 14.99,when the item was presented soon after. ' 

P: ' ' Oh, no ... I hate decimals. 
I: Is there an easy wayyou can think about them? 

, P: No (groan) I can't dodecirnals, would it be ... ? (pause, shaking head) 
Her re'spoQse changed when she was asked if it would be easier to handle if she thought of the item as 
money; fifteen, dollars and one cent add fourteen dollars, ninety nine., 

P: It is, I suppose so.~. [pause] yeah! .... 
I: Okay, well how would you go about that? 
P: I'd take the one cent and add it to that to make it one dollar, and then add 

fifteen-and fourteen and one, which is thirty dol1ars. 
The importance of an appropriate context for making the mathematics accessiblestiggested that students' 
conceptualisations of the basic operations could be usefully examined by looking at the contexts' students 
provided for some of the simple whole number items included in the interview shedules. These consisted 
of all combinations of the numerals 'five'and 'ten' using the four operations, (ie 10 +5,5+ 10, 10- 5, 
5 - 10, 10 x 5, 5 x 10, 10 +5, and 5 +10). The itenis were presented on~at alime in thea~ove order and 
students wereasked to give an answ~r, then provide an appropriate 'real life' context for each .. 

, Of particular interest were the students' responses to two of these items, 5 ~ to and 5+ 10, both of 
which an hierarchical approach to curriculum development would exclude from the primary syllabus on 
the basis that they involve difficult and abstractmathematic~l concepts which could not be understood 
until later stages when students have acquired the prerequisite concepts. As the students, in the study were, 
at the stage when it is assumed they are ready to understand these concepts, it was thought important to 
investigate how the students' conceptualisationof subtraction and division would be extended to deal 
with the items, and the role context played in the students' ability to make mathematical sen~e of the 
them. ' " '-' ' 

'The items 5 X 10 and 5 + 10 were often de~cribed by the students as being the "same" as the previous 
items (10 x 5 and 10 + 5) "just the other way around" suggesting students understood commutative 
properties, but these properties were also assumed for division and subtraction. as demonstrated by 
responses to the items 5 -:-10 and 5 - 10. Only when encouraged to articulate a context which. reflected 
the "other way around" did some students realise there were inconsistencies. For example. 

Nigel 02:7) Year Eight ' ' 
I: Okay; what about ten take five? 
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N: Oh, if you have ten smarties and then you give me five, then you've got five and 
I've got five. 

I: What about five take away ten? 
N: . That's the same, just done around the other way. 
I: Is it? So it would work out the same way, would it? 
N: Yeah, so if I've got,nohe's got, urn, I can't really work that one out. Urn, no, it's 

jus~ the same but you can't tell a story about that one. 
1: Have you got an answer for it? 
N: Yeah, it's five . 

. I: It's still five? 
N: Yes.· 

This can be related to .the learning difficulties which Kameenui and Griffin (l989 p578) suggest arise 
because students are likely to intuitively associate newly introduced concepts with those previously 
taught and will often continue to operate on the basis of earlier conceptualisations for as long as possible. 
A teacher often assumes evidence for continued conceptual growth is demonstrated when students are 
successfully applying a learned 'concept' within the framework of the controlled contexts which 
characterise a hierarchical learning sequence of concepts. The student, in fact, may be relying only on 
those personalised associations and interpretations that are derived from the contexts in which a concept 
is first introduced and may well be able to continue to operate successfully on that basis throughout a 
number of steps of presumed increasing difficulty without significantly adding to his or her developing 
conceptual framework. The problem reveals itself when a new application is introduced which, according 
to the syllabus, should require a small conceptual step but, for the child, often demands an entirely new 
framework of contextual associations. 

There is some evidence for this in the case of students who could, in fact, accurately articulate a 
mathematical interpretation of .5 .:;.10, but who were unable to supply an answer nor a suitable context 
without prompting, even though the relevant fraction concept should be available to them at this stage of 
their schooling. They seemed, in fact, to be restricted by the contextual associations they had just 
provided for ID 75, along with their preferred contextual conceptualisation for division. For example, 
Penny (12:9) during the Year Eight interview, conceptualised the initial division item as representing a 
quotition (or grouping) situation. Even with prompting, she !';eemed unable to move from this 
conceptualisation to partition (or sharing) which would be needed to make contextual sense of 5 .:;.10. 

Penny ( 12:9) Year Eight . . 
P: (I () 7 5) You have ten people and you have to work out how many groups of five 
you could have~ 
I: Okay;what about five divided by ten? 
P: You can't do that either. (referringto the earlier item 5 - /0) 
I: Not even. if I said that was five dollars? 
P: 
I: 
P: 

I: 
P: 
I: 
P: 

And that was ten dollars? 
Well, was it? I mean would that make sense? 
Yeah, butl remember last time that you said five dollars and ten cents wouldn't be 
right because they are different. 
What about five dollars and ten people? 
Yeah, I suppose you could really. (pause) I don't know. (shaking head) 
You're still not comfortable with it, are you? 
No. 
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Nete that Penny,even wh,en prempted with "five dellars" as a starting peint, maintained her initial 
cenceptu8.Iisatienef divisien by suggesting groups .often dellars WQuld be needed. She indicated by her 
response that she may have even censidered the mere feasible pessibility .of separating five delJars inte 
greups .of 10 cents, but-rejected this because'ef a remembered mathematical'restrictien', but was net able 
te re:-cenceptualise divis,ien as a sharing situatien. What is particularly interesting in Penny's case is that 
seven menthsearlier,duririg the Year Seven interview, she was able (with-a little mere prempting) te 
interpret the 5 + lOitem appropriately~ _- ' . . 

Penny.(l2:2) Year Seven 
P: (10 + 5) Yeah, if yeu've genen dellars and yeu want te ~new, if yeu, yeu wantte 

buy semething like, Christmas presents, fer twe dellars each, then yeu can wDrk 
.out hew many presents yeugetta buy. . 

l' But yeuknew the five first, se is that hew many presents that yeu want te buy? 
P: Yeah, well maybe if yeu've get tendellars and yeu want tQ buy five presents, . 

. and yeu'veget te wQrkout hew much money yeuwant te spend en each present. 
Nete here that the initial centext given described 10 + 2(net 10 + j and was cenceptualised as a quotitien 
(greuping) situatien.When Penny restated thesitJ,Jatien te accurately reflect 10 +5, the identical centext 
was us~d (ie $lOte'purchase 5 presents at$2 each) but bycheesing te keepeachcemponent censtant, 
she wasac~al1y ferced te describe the situation as partition (sharing), althollgh this seems net tD be her 
preferred choice .of a centext fer diviSien. This re-cpntextuallsatienef 10 +5 did seem te provide abasis 
upenwhich she could mere easily cenceptualise 5 + io when prempted with a similarpartitien situatien, 
even though she initially rejected the possibillty that the.item ceuld be answered.or that a suitable 'stery' 

. ceuld be given. ' . . . 
. P: Five divided by tenyou can't de! 

1: De yeu think you.r teacher er anyenecQuld doit? (P: Ne) 
I: What abeut a stQry ... js there newayte think abQut'that .one? (P:Ne!) 
J: What abeut if yQuask yQurself the same questien .... what abeut if it was, 

five'deLlars and yeu wanted tebuyten presents, is that possible tQ think· 
abeut? '. , ' ' 

P: Mm yeah, lthink se; . 
1: S.o hew much weuld yQU spend .on each. 
,p; fifty cents; 
1: What fractiQn efadQllar is fifty cents? 
P: Half. 
1: So do you still think there'snQanswer, er is it pessible .. 
P: . No, it's pessible. 

Naemialse pr.ovided an example where the student's persQnal conceptualisationef divisienand the .. 
c.ontextthat was initially prQvided determined -success with the unfamiliar item. During the Year Seven 
interview she initially struggled t.o previde a clear context .or shQW whether she viewed 10 +5 as 
reflecting qUQtitiQn er partitien. Even theugh she clearly knew hew tQ deal with the item numerically, she 
had difficulty centextuaIising it and finally saw it as ten dellars divided by five deliars weuld be' tWQ 
dollars, acenceptuaIisatlen .of divisien that was restricted tQ whele numbers unrelatedtQ a useful centext. 
When encouraged te explain her centext, she said a little impatiently, "Oh, its just tendellars,l 0 divided 
by 5 is 2!" Her resP.onse te 5 + 10 ·reflected this diffi.culty in conceptualising an appropriate 'division 
centext and clearlyshewed that she believed that the dividend must be larger than thedivisQr. She 
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claimed it was impossible because "tell can't go into it". When asked if her teacher would have an ' 
answer, she said no and added that "she'd say it's not a sum, not a real sum". 

By Year Eight Naomi had developed a conceptualisation of division which then enabled her to 
'adequately deal with both items. Her 90ntextfor 10 +5 was stated as a sharing situati)on ($10 divided 
between five people), so .that when asked to consider 5 +10 she repeated the context appropriately 
adapted, but then was not immediately able to adapt her conceptualisationof division as requiring a 
larger dividend. The context itself then 'provided the means for her to re conceptualise her understanding 
of division. 

Naomi(l2:7) Year Eight ' 
N: Urn. If you had, like, five dollars and then there are ten people you would have 

to'try and divide that. 
I: Would you be able to? 
P: Afraid not. 
I: Think about it. Think about really doing it. 
P: Oh; that would be point five. ,. , , 

The responses of both Naomi and Penny together with numerous other examples discovered in the 
i nterviewdata, clearly support the notion. put forward by Ernest (1991) that conceptual understanding' in ' 
mathematics develops as an idiosyncratic, contextually situated process in which each' student's, 
conceptualisations consist of quite unique mental structures. ' ' 

'Sierpienska's (1990 p27) analysis of the process which may be involved in understanding a 
mathematical concept is also clearly supported by the data. ,She postullitesthat the learner extracts 
mathematical meaning through successive 'acts of understanding' which seek out relationships between 
the initial 'sense' conveyed bya situation Or communication and its perceived 'references' (those other' 
events, situations, words etc to which the initial event may 'refer'). While the ,initial sense conveyedbya 
mathematical situation may be consistent among learners, the acts of understanding a student carries out 
to deal with it are likely to involve references which are extremely personal and may vary for an item" 

,such as 15.01 + 14.99 from the visualisation ofa real context through to the memory ofa previously 
encountered symbolic representation perceived of as requiring a similar response. , 

It is clear, for example, that Penny and Naomi made silTiilar sense out of the items presented in that ' 
each recognised the requirement for a division operation and could provide a mathematically correct 
response for 10 +5. Likewise the initial sense madeof5+10'wassimilar for both students in that it was 
consideredmathematicaHy impossible to solve. However, the references perceived by each student and 
the acts of understanding- they exposed in response to prompting, seemed to differ quite markedly 
according to their individual perceptions of division in a real context. It seems clear, therefore, that their ' 
conceptualisatioris of division can not usefully be thought of as resembling a common 'concept' . Each 

, may be able to "do" the' operationinvolved,but,the route by which their present understanding was 
attained and the future direction of their conceptualisations ate likely to be quite divergent. ' 

In a classroom situation, the diversity of the references each child uses to move from this initial sense 
, to an acceptable answer may ~ell be invisible to the teacher and are likely only to be uncovered in 

children whose consistently inappropriate responses invite closer scrutiny; These children, are then 
described as having misconceptions, misunderstandings or being in some way deviant in the 
development of their conceptual structures, the characteristics of which are believed to be quite different 
from the assumed conceptual homogeneity of their successful counterparts. Whereas, according to both 
Ernest and' Sierpienska, and supported by the data described in this paper, the development of each 
child's conceptualisation of mathematical ideas is quite idIosyncratic in nature, as is the mental processes 

, '. 
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involved in operating mathematically, and these cannot easily be accommodated within the current 
hierarchical structure of most primary mathematics curricula. 

CONCLUSIONS AND IMPLICATIONS 
III this paper an attempt has been made to. justify· the argument that the development of conceptual 

.. understanding in mathematics is a very personal and complex mental process that carinot be separated 
from the learners' perceptions of the contexts in which mathematiCal ideas ate experienced, nor can the 
. c::har~cter or cOurse Of these· mathematical conceptualisations be standardised across learners. 

_ The hierarchical structureofa typical primary mathematics curriculum is seen to be inconsistent with 
this approach in that its design seems centrally focused on the identification of fundamental mathematical 
'concepts'and the dissection of these in such a way as to ~implifytheir transfer to the learners' minds in 
a controlled sequence of learning activities. Contexts of use in such an hierarchical .learning structure 
seem to be very narrowly and superficially incorporated primarily as a means of exemplifying or . 
illuminating concepts for the learner, but also to provide practice in the application of specific concepts . 
afterthey have been 'understood'. To follow such a curriculum a teac:her would likely bepre-occupied 
with controlling the difficulty level of each mathematical learning experience in order to simplify the 
sequential acquisition oftnese concepts. .. . . . 

The responses·of the students· interviewed support the viewpoiI:Jt that· this curricula organisation. 
actually encourages classroom teachers to provide an impoverished mathematical learning. environment 
The range and quality of the references and associations available to the students during the development 
cof.their personalised conceptualisations of mathematical ideas ·seem to have ·been ·s~verely restricted, 
narrowing their mathematical repertoire to specific fragmented contexts of use without access to any of 
the broader conceptual structures which might have allowed the students to. perceive appropriate 

. teferencesand relationships associated with the particular range of mathematical situations presented. 
An alternative primarycurric:ula framework could more profitably focus on providing students with 

opportunities to begin engaging ina wide range of mathematical encounters in· real contexts with real 
purposes ata very eadyage.The types of contexts provided should be dictated by the interests and life 
experiences of the students involved, as well as the potential richness of the mathematical ideas which 

. maybe exposed by the situation. In suc:h a rich environment students can be encouraged to enter into. 
genuine mathematical discourse at a very early age, nof only without fear of confusion, but purposefully 
exposing the ambiguities and complexities inherent in mathematising in real contexts. Students then have 
access to afertile mathematical environment in which they are expected to make personal sense of their· 
experiences and gradually approximate adult mathematical behaviour, parallel in 'fact to the whole 
language approach to literacy learning which is itself based on children's natural. 'problem solving' 
approach to learning. .. 

Because suc:h a mathematics curriculum would be centraIIyc.oncerned with real contexts for real 
purposes, theconceptualisation process the learners engage in would be very similar to that used by 
mathematicians .andexperienced problem solvers when approaching new ideas, and the teacher could 
expectto be the students'collaboratot in this process of solving problems. Problem solving in this sense 
is not conceptualised as an activity which can be sepatated from other mathematical processes; but rather 
is inherentin mathematical activityperse. ' 
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Appendix A 
List of items involving operations and large or complex numbers from the interview schedule. 

1. . 1499 + 150] 5. 1.49 + 1 112 9. 2.5 x 0.2 
2. 3000 - 1499 6. 250 x 200 10. 5/8 + 7/8 
3. 15.01 + 14.99 7. 25 x 0.2 
4. 15:01 + 1.499 . 8. 2.5x 200 




