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Mathematics is a language. It has its own vocapulmbols, syntax and grammar. It is a
powerful way of communicating ideas about the wotfitreasingly, students have been
encouraged to talk about their mathematics, buptitential for using linguistic features of
that talk as indicators of student understandirgnly beginning to be explored. This paper
presents some evidence that the style of studezgponses to questions about groups of
similar algebraic items can indicate the levelhait understanding.

Students in mathematics classrooms are encouragedcoimmunicate their
mathematical understandings in a variety of waysy-writing about their mathematics,
drawing pictures or diagrams, talking with othemsd explaining their ideas and thoughts.
As students work together in groups or engage studisions with the class, with the
teacher or with a small group of peers, their nraiecal talk has often helped teachers to
make judgements about an individual’s understandigtudent’s use of appropriately
technical mathematical vocabulary is one charastterof student talk that can be explicitly
identified by a teacher. More subtle charactessté syntax and grammar may also
influence a teacher’s judgement, although thesemoape made explicit.

The aim of this study is to identify characteristaf students’ verbal responses which
may then be used as indicators of their understgsdof basic algebraic concepts and
procedures. One such characteristic is the stytesgonse students may give when asked
to tell what goes on in their heads when they aileed to comment on sets of similar
algebraic questions.

Background: Mathematics as a Language

Mathematics begins and proceeds in language, #rambs and stumbles because of language, and its
outcomes are often assessed in language. (Du®@1i,)1

Mathematics is commonly perceived to be communit#teough a written, lexically
dense language. There is, however, a recent acoeptiaat students need to verbalise their
mathematical ideas in order to describe and tdstioaships between mathematical
identities, and hence generalise from particulstainces (Dawe, 1995).

Research into the spoken language of the mathesnatissroom has largely focussed
on social and cultural issues influencing studetdsguage use and ability to engage
successfully in mathematics classes. It has alsasf®ed on the ways in which teachers and
students interact to create effective learning remvnents (Ellerton & Clements, 1996;
Stephens, Waywood, Clarke & 1zard,1993)

Understanding the language of mathematics doesnmotve simply the acquisition
and use of the appropriate vocabulary, although dises seem to be the focus of some
curriculum documents such as the CSF in Victoriea¢M®regor, 2002) and the NSW
Mathematics Syllabus 7 —10 (Board of Studies NS@)2). Students often struggle with
the language because much mathematical languagenatigal language, borrows words
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from natural language or ascribes particular meaminwords commonly used and has
syntax not unlike, yet different in many cruciabpects. These mathematical language
patterns and the extent to which they affect aesttid mathematical understanding have
received little attention (MacGregor, 2002). Thags been demonstrated a relationship
between literacy levels and mathematics achievemiglaicGregor and Price (1999)
concluded that students who demonstrate an awaraiabe structures of their natural
language are more successful in dealing with algelstatements and with translating
word problems into useful mathematical forms.

How students are thinking is often more effectivetyealed through their talk, if
teachers realise that they need to listen to stadsot only to correct them, or to assess
what they say, but also for how they convey theaughts (Dawe, 1995). When recording
then analysing students’ talk about algebraic esgpoms, Smith and Phillips (2000) were
cautious about the students’ reasoning. Statensers as ‘® and X is 6x squared’ they
felt, could indicate either poor understandingloppy expression. MacGregor and Stacey
found that secondary students who used such inforamelear, or immature ways of
describing number relationships were less likely redate those relationships to a
mathematical operation (in MacGregor, 2002). Compentence structures, use of the
logico-grammatical connectives (Dawe, 1995) suchsas ‘if’, ‘because’ indicate deep
understanding of mathematical concepts. This utaleighg can be fostered by teachers
providing contexts that challenge students to maleghematical arguments that in turn
develop their thinking and their ways of expressimgse ideas (Douek, 2002).

Listening to linguistic characteristics in studéalk may also give an objective basis
for judgements about students’ attitude to mathesaBills (1999) examined theaodality
of students’ responses in a one-to-one interviemchoes to their response to classroom
culture. Use of words such as ‘may’, ‘might’, ‘justodify the authority or confidence of a
response. Rowland (2000) also examined students’ofitiedgesand teachers’ use of
shieldsin classroom conversations. When students useeledigey convey a sense that
they lack confidence in what they say, when teachse shields, they provide a safety net
for students to avoid giving a direct answer andgoearing to fail.

Analysis of students’ descriptions of their caltidas procedures has lead Bills and
Gray (2001) to conclude that the style in the pdoce was described may indicate the
student’s level of understanding.

Using data from interviews with children aged bedwé& and 9 years of age Bills and
Gray (2001) and Bills ( 2002) found that the langgiahildren use may point to individual
differences in their modes of thought. The childvesre asked to describe ‘what went on
in their heads’ as they performed various mentdtutations. Their responses were
matched with their success in correctly performntimg calculations, and with the difficulty
of the calculations. The results suggested thatackeristics of the language used by pupils
who are successful in mental calculation include uke of the pronoun ‘you’ rather than
‘', as well as non-particular expressions of gaitigr in the simple present tense and as the
use of logical, deductive connectives such as‘§8, and ‘because’.

The purpose of the study, part of which is repontethis paper, is to ascertain if such
linguistic features may also be used as indicabbrstudents’ understanding of algebraic
processes. In particular, this paper reports onatiaysis of types of responses, whether
they are focussed on particular items or are gingyeneral terms.
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Outline of the Study

Students in years eight and nine from three seegndahools in regional NSW
participated. The study consisted of two partghinfirst, students were asked to complete
a survey (test) of 40 algebra items, administesetheir class teacher in class time. For the
second part, thirty-three students who represeatexthge of success on the survey items,
who were willing to be interviewed and who had eginger permission were interviewed.
The interviews were audio-taped and transcribeeé. Sthivey items were drawn from Stage
4 examples in the NSW 7-10 Syllabus (2002) and fkamhemann’s study (1981). They
included the manipulation of algebraic expressiand the solution of simple equations.
The responses were coded as correct (2), incofigcand then analysed using Rasch
Modelling. The interviews consisted of nine setgjoéstions, each set consisting of up to
eight items drawn from the survey and grouped aliogrto structural characteristics
(Table 1).

Table 1
Items in Sets Presented to Students During IreexviDD: Average Degree of Difficulty)

Setl: Set 2: Set 3:
3m+8+2m-5 4 x5p 2(x+5)
Sp-p+l 2abxa 2(x+ 4)+3(x-1)
2ab+3b+ab 4r x5t x 3
2(x+5)+8
DD: -0.473 T
Set 4a; Set 4b Set 5:
a,a dab x+5=7
5 10 4b 2t -23=49
3p_p 2.3 5a-4=2a+8
D4D' i ” a b X+(X+2)= (x-1) +8
T 2 sa 4(p+3)=32
a? 4 4y =20
DD: 1.19 10y =5
ax=5
DD:1.11
Set 6 Set 7:
5 =12 (6Xy)2
4 2
X+3 _ (X+y)
o T (a-b)+b
@:180 8p_2(p+5)
X DD: 2.99
DD: 1.49

The first set consisted of expressions to be sfiagliby adding or subtracting like
terms, the third set of expressions with brackaetsthe fifth and sixth sets were equations
to be solved. The items were written and the stisderere asked to act on the items
mentally where possible. Students were shown areesdt of written algebraic items and
asked: ‘What goes on in your head when you seeesgfms/equations like these?’ The
intention here was for students to read throughtaths in the set and decide on some
generalisation about the members of that set. Tigletre set consisted of items from
Kuchemann’s (1981) work used to determine studemtsierstanding of algebra syntax
and symbolism. The ninth set was of questions desigo determine some background
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linguistic structures of the students as they anssvguestions that were non-algebraic or
non-mathematical. These data are not includedarptlesent analysis. Only the students’
initial responses to the question have been coreside

The interview transcripts were analysed for sevingluistic features of these initial
responses, including whether the responses paatecular or general Particular responses
are those where the students have dealt with itdali items in each set without
recognising any structural similarities betweentladl members of the set. These responses
were identified in four ways: (1) One item only wéehe student has given a description
of the process or an answer to a single item irsétg(2) one item has been responded to,
but the student has offered some sort of explamdérplan]; (3) several items have been
responded to, the student either giving a seriemefvers or a description of the algebraic
process for each individual item; and (4) the stideas offered some explanation for the
answer or the process for each item in the set.

General responses are those where the studentdraseme mathematical aspects that
are shared by all members of the set. These respare those where (1) the student
quotes an all-encompassing rule; (2) the studeategua rule and supports it by one or
more examples from the set; and (3) the studergsgar general procedural rule and
supports it by mathematical reasons which needrelgt on the particular examples
presented to them [explain].

The resulting data were analysed in two ways. ligjrst order to determine if the type
of response changed as the degree of difficultthefquestions changed, the number of
particular and general responses to each set wapared with the order of difficulty of
each set. This degree of difficulty was establisbgdveraging the threshold values, from
the Rasch scaling, for a correct response for eadhe items in the set. Secondly, the
numbers of particular and general responses maedadyof the students was compared to
their success on the survey items in order to &ecd students with differing levels of
success gave predominantly different types of nesps.

Results

Response Type Compared to the Degree of Diffiofililegms

Table 2 sets out the numbers of particular andrgénesponses for each set of algebra
items, according to the degree of difficulty of eaet.

Set 4 was analysed in two parts, the first (4apisted of two expressions in which a
pair of algebraic fractions was to be added or raghked, the second (4b) required
simplification of algebraic fractions to be muligd. Students tended to deal with the first
and then with the second without making any gersaitébns about the set as a whole.

It should be noted that the rules and generaligatthd not have to be mathematically
correct or appropriate for this part of the analyi one or two cases, students who did not
score well on the survey items, and who were indher graded classes, quoted rules that
were not mathematically useful. For example, inpoese to being shown set 4a, one
student said:

I think of adding those bottom numbers first, tlagiding the top...

Ninety-nine responses not included in the tableewttiose considered to b®n-
mathematicalResponses such as ‘I don't like fractions’ orriRaway’, those which gave a
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general description of the members of each set asclihey've all got brackets’ or which
simply repeated the question were included indhasip.

Table 2
Numbers of Student Responses to Each Set of kerasged by Degree of Difficulty

Responses to particular items in each set Gerespbnses to sets of items
Set Degfree
0
Number difficul 1item | 1 item +|{2 or mor¢ 2 or thal Rule | Rule + Total
ifniculty . more +|particularl . Explan| general
only | explan| in set given |example
explan |responses responses
7 2.99 11 0 8 3 22 4 3 0 7
6 1.49 12 4 4 5 25 0 0 0 0
4a 1.24 7 1 1 1 10 3 5 1 9
4b 1.193 12 4 4 5 25 2 1 0 3
5 1.11 7 0 6 4 17 1 5 2 8
3 1.013 8 0 3 0 11 7 10 3 20
2 -0.13 5 2 7 1 17 4 6 2 12
1 -0.473 3 0 1 3 7 12 9 0 21
Totals 65 11 34 22 134 33 39 8 80

In all, 214 responses from 33 students were trezgdzbingnathematical25.6% of all
responses were considered to be general and 4a8#¥upar. Only 10.5% of all responses
were explanatory.

Two sets, 1 and 2, were rated an average degriffiofilty less than 0, and 25.9% of
all the responses were in this group. However, %00f those responses were general,
whilst 20.3% of the remaining responses on itemth \an average degree of difficulty
greater than zero were general.

Response Type and Success of Students

The number of initial mathematical responses fr@athestudent varied, particularly as
the weaker students often gave non-mathematicpglonsges, even when prompted, or
declined to respond to harder items such as thossets 4a and 7. Consequently, the
overall number of initial general responses by estadent on each set was compared with
the overall number of initial responses recordethiay student.

60% of the responses from students whose survegseeere in the top 75% of all
scores were general in nature, whilst 41 % of nase® from students in the bottom 25%
were general. For the students whose survey stayés the middle 50%, only 31% of all
their responses were general. The particular regsoaf all students were split into those
responses which addressed only one item in thangethose which addressed most or all
items. Students whose scores were in the lowest\288é more likely to respond to one
item only (67%) and offer only an answer or a dgsion of the procedure:

Just go 4 times 5b, write down 20b.

Students whose scores lay between the first aind ¢uartiles were almost equally
likely to provide responses to one item, or to s&lv€55% and 45%). However in
approximately one quarter of those cases, theyamffsome explanations. One student’s
response to being shown Set 1 was:
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...both the m’s are similar so you can add them. &3gn because the plus before the 2m belongs
to it, so you go 3m plus 2m equals 5m and the 8zitkey're both similar and the minus is in front
of the 5 so it belongs to it, so it's 3, so it weblde 3m plus, no 5m plus 3. That's how | do that
question. Question 2. It'd be 5p minus p becausg'th both similar terms, would be 4p, because p
equals 1. 4p plus 1,that would be the answer kthiQuestion 5...um a and b when you put them
together they are similar with the other a anddtHe plus belongs to the ab because it is in fobnt

it. So go 2a plus ab because ab equals 1. Youales8 you'd go 3ab and you go plus 3b because
you can't plus b with the ab because they are rdiffe

Of the students whose survey scores were in th@%éf, 56% responded to one item
only and only 2 out of those 14 responses wereaggpbry, whereas 54% of the responses
to many particular items were explanatory, suchnathe preceding example and in the
following response to Set 2.

So, basically, multiplying 5b by 4 gives you 20lechuse you are just putting 5 lots, 4 lots of 5b
together. 2ab times a. Well with that you can amtrk with the a’s so it becomes 2baAnd 4r
times 5t times 3, that can become... Well you cartiptylthe numerals so that gives 20 tr, times
that by 3, that gives you 60 tr.

Discussion

When teachers listen to students explaining theaithematical thinking, it may not be
just the student’s ability to use mathematical wodary or to cite a rule that influences a
teacher’s judgement of that student’s understandihgre are also linguistic features that
are typically used by students who are more, @&, Issccessful. One such feature is the
style of response, whether it be in general terrhgchvexpress understanding without
necessary reference to particular items, or in nspecific terms when students refer to
particular items.

Two hypotheses were considered: (1) that morecditfitems would attract a greater
proportion of particular responses; and (2) thas Isuccessful students would be more
likely to give simple responses to particular iteimsn more successful students. In the first
instance, comparison of the numbers of particutagemeral responses with the order of
difficulty of the survey items indicated that theoma difficult items were responded to in
particular terms by more students and that moreestis responded to the easier items in
general terms. This result was significant at oyobel p = 0.001 level xf = 43.8, with 5
degrees of freedom.]

Some of the trends may not be so clear because gfrbuping of items in this analysis
and the averaging of successful threshold valuesekample, the third item in Set 4b was
scored as either wholly correct or not correct. Matudents did perform one of the
simplification steps such as dividing byor dividing by 2, but this did not qualify as bgin
correct. Yet many of those students who were scaseleing incorrect could still offer a
description that indicated they could carry outphecedure, at least in part:

... and question 16, I'd do the samé.times 4, 4aand 2 by 5a would be 10a ovefdand ... and

then ... the a from the top would cancel out on tb#dm. The denominator would be 4a times a
and then the a would cancel one of the a’s outtlamd it'd be 10 over 4 a ...

Set 5 contained some items that were much moreuliffthan others because they
were equations where the pronumeral of interestiroed on both sides. Many of the
weaker students did not attempt these questioter&twho were more confident in their
arithmetic, successfully answered these by usiraj &nd error methods. This meant,
however, that their thinking was difficult to deiber in algebraic terms, although ‘I used
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guess and check’ is a generalisation of sorts. Wewewhen the number of general
responses to groups of items with an average degfradfficulty less than zero was
compared with the number of general responsesdatbups of items with an average
degree of difficulty greater than zero, it was clémat the easier sets of items elicited more
general responses than the harder sets.

When the responses of individual students to the skitems were analysed, the
results indicated that the more successful studemtie more likely to give general
responses to questions such as ‘Tell me what goés your head when you have to deal
with questions like these’ than students who wess kuccessfulxf= 10.1 with 3 degrees
of freedom. Significant at p=0.02 level.] T he pie is not so clear for those students who
were partly successful, that is, those whose sooegs above the lowest 25% but below
the top 75%. On this one criterion of response,tiipese students were more likely to give
particular responses than those students in therbajuartile. However, although students
in the interquartile range were slightly more likéb give a response to one item only in a
set, in 23% of cases that response involved someos@xplanation. Of those students
who responded to most or all items in a set, 30%efresponses were explanatory. This
indicated that students who are moderately suadesah provide explanations for the
algebraic processes they perform, although theymoayet be able to see the relationships
between each item clearly, and hence may not leetalgeneralise.

In all but a few cases, the explanations were thasieh provided some procedural
reasons for the algebraic process described, |uch a

You have to put them so that the denominatorstereame, so that you can complete it, so the first
one would be 2a over 10...

Even the best students offered little in the wag)gflanations which gave a conceptual
justification for the algebraic procedure. Onehd# few such explanations was given, after
a prompt, as the student responded to items idas€$ indicates the student’s response, |,
the interviewer):

S: You have to make the denominators, the bottoe; the two, with addition you have to make

the two bottom numbers the same...

I: Why do the bottom numbers have to be the same?

S: Um, so like the fractions are equivalent to eaitier.

The least successful students often gave an areveely one item in the set, with no
accompanying attempt at an explanation and proceeddurther. Those who cited a rule,
even one which was appropriate, seemed unableetdt us many instances. This student,
whose survey scores were in the bottom quartigpaeded to items in Set 3.

S: ...I1 think you need to do the one inside the beadkst and then do the ones outside

This sounded like a reasonable generalisation, ébetided to explore a little further:
I: Can you tell me more about that?
S: um...It's like, you have to find out what x equals
I: [Shakes head]
S: Oh, it wouldn't. | don’t know...I wouldn’t know.

One conclusion that may be drawn from such respoissinat less successful students
resort to quoting some sort of rule, although timay not be able to use it. More successful
students, although they might focus on particukms, are inclined to act with some logic
that they are able to articulate.

Each of the three schools involved in the study ¢nadled mathematics classes, all of
which participated in the survey. When matched regjasuccess on the survey items and
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grade as determined by the school it was foundatatudents whose survey scores lay in
the top 75% were in the top Year 9 class in thespective schools when they completed
the survey. That is, they were the most experiestedents and the most successful. Six
of the eight students whose scores were in thikdrbbttom 25% had been placed in a low
Year 8 class by their schools. These representedleast experienced and the least
successful students.

Linguistic features of students’ explanations magve as indicators of their level of
understanding. This paper describes data thatatelithat successful students are more
likely to give general responses than less suagessfidents, and that more difficult
mathematical ideas evoke fewer general responsesdaisier items. Further examination
of the data is needed to build a more robust mduai could comprise several other
linguistic features such as the types of pronowsesluthe tense of verbs and the modality
of the responses.
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