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Students learning the art of solving equationsgifimmal algebraic procedures are usually
presented with examples that require the applioatiosimple arithmetic knowledge. This
paper suggests that such contexts do not alwaysumage students to use arithmetic
procedures that are algebraically useful or toteeeneed for formal algebraic techniques.
Excerpts from interviews with students reveal thieinking and some of the strategies they
use. Some implications for teaching are suggested.

Translating the jostle and clamour around us imfoagions is half the art; solving them the other.
(Kaplan, R., 1999. The Nothing That Is: a natursidry of zero.)

In 1989, Fey predicted that by the year 2000 cotiweal school algebra would be
replaced by one which used computer technologywainidh was grounded in realistic
applications. Little has changed however in NSWobadary schools. Introductory formal
algebra (Stage 4) focuses on students developagdhventions for expressions and the
associated procedures for the manipulation of esgowas and equation-solving skills
(Board of Studies NSW, 2002, p 82 -86).

Equations express an equivalent relationship betvpeets of a problem. This is the
first part of the ‘art’ of creating an expressiviedauseful mathematical model of some
aspect of the world around us. Solving equatioosydver, is often seen as less an art and
more a matter of following a well-worn procedurakip. The reasons for the existence and
meaning of equations (and expressions) remain $ongeof a mystery to many students,
at least until they have demonstrated a procedeffatiency in manipulating these
algebraic creatures. The art of ‘translating thelgpand clamour around’ them is usually
taught only after they have mastered the art ofitewi procedures. The conventional
procedures for solution are taught and practiceth wvmany simple, and simplistic,

examples of arithmetic equations, although theabyl$ explicitly recommends that
Students need to solve equations where the sotutiom not whole numbers and that require the use of
algebraic methods (Board of Studies NSW, 2004,)p 86

Research into student’s algebraic understandings, as those by Demby (1997), Hall
(2004) and Matz (1982), has been focussed on emade by students. This study set out
to explore the thinking of students who had colyeahswered algebra items in order to
determine the types of strategies they used wieidhd their success.

Their responses revealed that these successfargtustill relied mainly on arithmetic,
intuitive or informal procedures which some desexdiiln loosely algebraic terms.

This paper presents excerpts from such interviewd, discusses some of the thought
processes of the students and suggests some itigig#or teaching.

Background

Research into the thinking of students as they ldpvealgebraic skills and
understandings has examined, among other aspduts,difficulties in connecting
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arithmetic concepts with algebraic ideas (van Ame&903), understanding and using the
symbolism of algebra (Booth, 1988; Fagnant, 20@2¢, manipulations of expressions
(Demby, 1997; Hall, 2004), the concept of the degt and the solution of equations
(Kuchemann, 1981) and the development of algelaiastraction, particularly the use of
analogical reasonindgEnglish & Sharry, 1996).

Equations that students encounter in school atemtypes -arithmeticandalgebraic
(English & Sharry, 1996). Many of the equationsdstuis are introduced to are of the
arithmetic type described by English and Sharr@@)9These can be solved by intuitive or
informal, pre-algebraic techniques such as sulbstituguess and check abdcktracking
Algebraic equations, in the sense used by EnglghZharry (1996), require students to
view arithmetic operators and the equality sigmedating parts of a whole rather than as
instructions to act, or as indicating a closed arsas is often the case for the equal sign
(Horne, 2005). [See also Table 1.] Students als@ ha accept algebraic expressions as
meaningful solutions to equations. They must aksalile to manipulate algebraic symbols
as objects in order to modify parts of equationsn(Ameron, 2003). Students’ use of
informal techniques may be more efficacious in tlgyeg equation-solving skills than the
direct teaching of formal algebraic methods (Kiera889), but students have to see the
need for these formal methods (Booth, 1988).

How students think about solving equations has iéeminated through analysis of
their errors (Matz, 1982) and through ‘conversaiofDemby, 1997). Novice algebra
students make typical errors and use many infopratedures, which can work in some
instances, which may be wrongly generalised to rether which are unable to be
represented algebraically. In the present studycessful students have been interviewed
and their strategies for solving equations typichlthose presented to students in the
introductory stages discussed.

The Study

The study involved a group of twenty-five Year Qifd year of secondary school)
students in the top graded class. Along with a detagcohort of Year 8 and 9 students in
two other schools, they completed an algebra suftesy) which consisted of forty items.
Twelve of those items were equations to be solfedhle 1] and which have been adapted
from NSW Syllabus documents (Board of Studies N@@02) or from text books used by
the participating schools. No calculators wereéaubed. The students’ responses to these
twelve items form the basis of the present study.

Responses to the survey items were coded as bampgletely correct (2), incorrect (1)
or not attempted (0). The level of difficulty ofamaitem has been determined from Rasch
modelling (correct/incorrect) of responses to tees. [Table 1].

Although the students who are the focus of thissp@pmpleted the survey in Term 1
of their Year 9, they had had no further algebssdas other than those in Year 8. They
had, reportedly, met the Stage 4 Algebra outcomBear@ of Studies, NSW, 2004, p. 82 —
86). However, they seemed to be more successklaing all or most of the equations
than other top graded Year 8 students who had agetplthe survey at the end of their
Year 8 (one term before the students in the stuady), who had also completed work that
would lead to their achieving Stage 4 Algebra ontes [Figure 1]. The results of the
students in the study were more nearly consisteétht those of other top graded Year 9
students, at the end of Year 9 [Figure 2]. Theadesits had completed further Algebra
studies at Stage 5 level (Board of Studies NSW22p@B7-88).
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Success on each item by those who gave a corsgminse is expressed as a percentage
of the number of students in each of the classes.

Tablel
Survey Items used in Interviews together with R#tech Difficulty Levels

Survey Number | Item | Item Difficulty Level
Items requiring simple number fact recall, integelutions
27 Ifx+5=7, thex =...? -1.20
28 If 4y =20, theny=....7 -0.63
Iltems requiring inverse number fact recall, integiesimple fraction solutions
32 If 10y=5y=..7? 0.88
o2 30 If x =12, what ix? 0.41
o .2 4
ET m —— . —— .
=3 ems requiring simple, direct computation, integelutions
< W 29 What igt_if 2t — 23 = 497 0.74
31 Solve 4(p + 3) = 32 1.04
33 X+ 3 =7 What isx equal to? 0.69
2
35 Xx+x =4 What i equal to? 3.07
3
Items requiring some algebraic reasoning and/ongowmber sense
o 2 36 If 63=180 3.37
‘s S X What is x?
3 s 37 Solve: 5a—4=2a+8 2.10
%E 34 Solvex + (x+2)=k—1) +8 2.35
) Iltems requiring algebraic reasoning
39 | fax=5, therx = ...? | 3.94
Results of students in Year 9 on Results of students in Year 8 (and study
Items 27 -39 class) on Items 27 - 39
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In audio-taped interviews after the survey, thedshis were asked to explain what
went on in their heads as they solved the varigusions.

Students were selected for interview on the bassivey responses that gave a range
of scores, their willingness to be interviewed #meir having caregiver permission. All but
one of the students interviewed obtained surveyescabove the median when all scores
were distributed across the students from all tedols. The five figure data for correct
responses for the school studied were:13, 22, 2838 (n=24) The data for the correct
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responses from all students in all three schools: \#a 8, 15, 25, 39 (n=222). Detailed
results for the students who were interviewed arergin Table 2.

Results and Discussion

The results of the study are presented in two foffirst, responses to the items by the
students interviewed are set out in Table 2. Alsduded are the numbers of correctly
[corr] and incorrectly [incorr] answered items ah@ number of non-attempts [n/a] over
the whole survey. Second, the excerpts from thervigws are given to provide insight
into the thinking of the students as they dealthwhe different equations. Some extra
equations were presented to the students duringntbeviews in order to clarify some
points of understanding. Because of space limitationly those typical responses that
serve to illustrate concisely a particular poirg arcluded. The excerpts from interviews
are grouped according to the types of equationsuds®d. Students interviewed are
identified by a number, and the interviewer as I.

Table 2
Results on Items 27 — 39 (except 38) of Studetasriawed

Item Numbers

Student 27 | 28 | 29 | 30 | 31| 32 | 33| 34| 35| 36| 37| 39| cor |incorr | nla
390111 2 2 2 2 1 2 2 2 1 y P L 30 10
390114 2 2 2 2 2 2 2 1 1 1 D D 30 6 4
390104 2 2 1 2 1 2 2 2 Y. y L L 28 1p 0
390113 2 2 2 2 2 2 2 2 1 2 2 L 28 1P (|)
390116 2 2 2 2 2 2 2 Q Y. y P L 28 g 10
390102 2 2 2 2 1 2 0 g q [l D L 19 16 5
390128 2 1 1 2 2 2 2 Q ¢ ( D L 18 1p 10
390120 2 2 1 2 0 2 2 g q [l D D 1y 1P 11
390118 2 2 2 1 2 1 0 Q ¢ ( D L 18 16 11

Group 1: Equations which can be Solved Using Knblwmber Facts

Students were asked to describe what went on iir tieads when they solved
equationx + 5 =7 and ¥ = 20. These equations require students to renelfact, and the
letter does not have to be operated on (Kuchemb®®8i). Horne (2005) refers to these
pronumerals as ‘knowns’. Very early in the intewjestudent 118 admitted:

Well, 1 just don’t use the letters that much, alnelt, just, yeah. | don’'t work with the letterstthauch.

Other students described the process as:
113:Because of the plus symboblus 5, so you go up numbers until you reach & 4t?.

Other students described their thinking:
I: Why did you say 7 take away 5? [Q27]
118: because that's the number you need to findixpequals 7, so what's in between kind of ...
Because if there are two numbers and you take bitem from the answer, then there’s going to be
the other number, what you need.

and
116: Well, twenty-eight’s [¢= 20] pretty easy because | know 4 times 5 eqR@isoy equals 5.
Typically, when solving these equations, studeelts n known number facts to arrive
at an answer. This type of response cannot be ewriis an algebraically useful
representation. Nor does it provide an analogy ¢hatbe used to deal with questions like
those in the following group.
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Group 2: Equations which rely on Understanding atiAnetic Relationships

I: What if | gave you a question like thaty &quals 7? Tell me what you would do?
116: um ...

I: So, what are you thinking?

116: I'm trying to find what they are. 6 from 6,,no. | don’t know. | was trying to find what a
sixth would equal, but that wouldn’t work anyway.

I: A sixth? A sixth of what?

116: Like, | dunno, It wouldn’t work anyway, so.

This student recognised that the answer would baee one sixth of something, but
two points are important here. Although he expldihés reasoning in solvingy4= 20 as
‘you divide 20 by 4’, it would appear that the $dgy actually used was to identify the
known product of 4 and 5, but then rephrase theomag in classroom terms, as the
following student made explicit.

102: [reads] If 4 equals 20 them must equal... [Q28]. Well here, | know thati4 the same as 4
multiplied byy, so 4 multiplied by equals 20. Then to fingl divide 20 by 4

However, in the equationy&= 7, because there was no known product of 6 anthar
integer to give 7, the student was unable to supiha result of using the arithmetic
inverse, an algebraically useful concept. Seconalythe answer was a fraction, not an
integer, it was clearly one with which the studests uncomfortable. It is worth noting
here that the syllabus makes explicit that studeetsd to have dealt with such equations
by the end of Stage 4 (Board of Studies NSW, 2p086).

Some students used quasi-algebraic strategiesxphtitly relied on seeing arithmetic

relationships to deal with equations such a<8.4 = 201.9.
I: So, what goes on in this ortedake away 48.4 equals 201.9? What would you do?
104: 48 point, aahh, I'd do 201.9 plus 48.4, equals
I: Can you explain to me why?
104: I'm reversing it to find out. If I'm attempinto find outt, I'm not. | can just reverse it. So, |
can, instead of finding out two hundred and on@fpoine | can find out

However when asked what reversing does to an endhkiis student replied:
104: Nothing. Well, it reverses...
The idea of ‘reversing it’ contains seeds of thdarstanding of ‘inverses’, but it is not
clear what it is that is being ‘reversed’. As ortber student explained when presented
with questions 30, 33 and 36 [Table 1]:

111: Well you have to change it around again, tkethe opposite. Like it would be. 4 times, 4
divided by. 12 divided by 4, i [Q30]. You have to times 12 by 4 to get whatusio4 ...

It is not clear what ‘the opposite’ is, althouglstetudent did get the correct answers to
each of these questions [Table 2].

The confusion of ‘opposites’ or ‘reversing’ equatoor operations with no idea of the
mathematical relationship between the parts ofettpeations is vividly illustrated as the
student uses the surface structure of the equadioeason analogically, focussing on the
one feature — that of one number being dividedrimgttzer:

111: You have times 7 by 2 and minus 3 from thafirtd out what x was, in 33. And 36, it
would be 180 divided by 63.

Equations such as those in questions 31 and 33gTdbcan be solved by students

‘closing’ each arithmetic step.
120: um ... aahh, so you'd go 7...divided by. No 7 8r@eequals 14. So 14 minus 3 is 11. So it's
11.x equals 117

Sometimes, the ‘closure’ is not so complete, atleathe explanation.
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I: How would you go about doing question 29?
113: I don’t know. I'd be adding 23 plus 49 andtiget that answer and dividing by 2.

The more successful students could deal in a gimig, by closing on each step, with
an equation such as the following. (The use of‘thesign suggests other issues worth

further investigation.)

I: Tell me the steps that you would go throughetanite x plusa overb equalsc
[(x+a)/b = c].

104: Well, first of all | would change it from aafttion to a normal equation, division, and I'dtjus
bear in mind thax plusa overb is the same as writingplusa divided byb [+], so then I'd write ...
I: See if you can do it without writing.
104: OK. x plusa divided byb equalsc, thereforec timesb equalsx plusa, thereforeg timesb
equalsx plusa, ... thereforex equalsc timesb minusa.

Group 3: Equations Requiring Explicit Algebraic &&gies

When students were presented with the algebraiatiems in questions 37, 34 and39,
they used some algebraic strategies to transfoenequations and then used a ‘guess and

check’ process.
104: Well in this one [Q34] | simplify both siddsst. 2x plus 2 equalg minus 7... so if  plus 2
equalsx minus 7 that means that ... [writes]. Doesn’t makg sense.
I: Why not?
104: BecausexX2plus 2 can’t equat minus 7
I: Why not?
104: Because we are saying two lots of a numbex plean’t equal that same number minus 7
[...]Oh, wait a minute, it's plus 7, it can work ... Yted did it by guess and check | think. | don’t
know how to work them out, properly.
Another student was presented in the interview wliéh5 — 7.3 =14.X -4
I: What about the first one on that sheet. 16.8 takay 7.8 is 14.X take away 47
116: To findx? um ....
I: What are you thinking?
116: Trying to think of a way other than just tryidifferent numbers fox
The students have realised the need for strateébesare more efficient than the
informal ‘guess and check’. To use iterative sty@e effectively, the students need to have

a sound number sense. For example:

120: ...63 ovex equals 180 [reading]. ... It's just 180 timedFirst to find it out you've got to go

63 divided byx equals 180, so 180 tim&sl mean, 180 times equals 63, | think.

I: Therefore, what'x?

120: oh! ... 180 times, oh, aahhh ... I'm not surel’'sodoing 180 times equals 63. So it’s, it's

around like a third, around a third. So 63 dividigch third. Well it has to be lower than zero,

because then it will go into that more than what tiumber is to get 180. So it has to be around a

third | think.

When such a number sense is lacking, the hunt Her ‘tight number takes

considerable time (and a calculator).

102:...and then the next one is 63 ...[Q.36]. Firsthg lgot to find the bottom, the number below

the fraction, which would, can't figure it out witht a calculator off the top of my head.

I: What would you ask your calculator to do there?

102: I'd probably go just 63 and I'd start, I'd fably start, usually | start with um, any numbery; s

| start with maybe a three, and then if its absdjiita number which is very low then maybe I'd try

63 over 10, if it was a number which was too higgrt1'd work my way back between something

that has to be between three and ten. So it takésle, but | usually | find that the most reliable

way for me for doing it.

However, when presented with question 89%5] the arithmetic strategies, including

guess and check failed. All of the students intaxad resorted to guess and check when

dealing with equations that would have requiredrthte use algebraic manipulations if
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they were less simple, and none successfully amsivguestion 39. Most answered tkat
was 2.5, 1, 5 or 4. All of them, on the other h&exicept student 118) answeredy )5
successfully. One student however found it impdesib separate the process and the

product:
128: If 10y equals 5y ... ... umy equals.. divided by 2.
I: What is divided by 2?
128: 10, 10 divided by equals 5, wequals divided by 2.

Conclusion

The responses above provide some insights intdegtes adopted by successful
students to solve typical introductory equationd #ve mathematical ‘usefulness’ of those
strategies and raise many points about studentgiematical understandings as they are
introduced to formal, school algebra. These weng, sbveral measures, competent
mathematical students. They were in a top-gradassciscored well on an algebra test of
uncomplicated, but typical items, and demonstratggnerally sound number sense and a
facility with number facts.

However, their explanations gave little evidencat tihey were using formal algebraic
techniques to solve equations, although they had beell-rehearsed in those elementary
techniques. Their Year 8 (Stage 4) teacher had dstraded the procedures and given the
students ample practice through textbook exercBesause of the nature of the equations
in the survey they could use their knowledge of bhanfacts, arithmetic relationships and
recursive methods such as ‘guess and check’. Tineseods appeared to work for some
students even for questions 37 and 34, possiblgusecthe numbers involved were small
positive integers. During the interview, even theselents who had correctly solved those
equations in the survey could not do so. It wathiatpoint that these students recognised
the need for other, more efficient methods to sslv@e equations. This is the point where
teaching of formal techniques can begin.

Some students could transform simple one- or twp-diteral equations, using
arithmetic analogies. However, when they had tol dath making x the subject of
equations of the forma/x = b, it was clear that in previous examples they actedhe
surface similarities and ‘did the opposite’, rath#ran perceive any meaningful
mathematical relationships, and hence correctly ingerse operations to transform the
equations. Transformation of equations that aretnasisparently arithmetic demands that
students understand the relationships between ghthwerms. This relational thinking is
at the centre of algebraic understanding. The auwes of formal school algebra derive
from a generalisation of arithmetic relationshipwl arithmetic procedures. But those
relationships have to be made explicit and the gores have to be generalisable (Booth,
1988). Generalisation can only develop from a broate of experiences. So students
need to encounter, early on, equations which haberothan small positive integer
coefficients, or solutions. Equations which use #&mire set of rational numbers help
students develop basic arithmetic skills, good nemdense and encourage the use of
strategies that are more efficient and generaksdiiis is consistent with Stage 4 syllabus
expectations (Board of Studies NSW, 2004).

Presenting students with simple equations, whiely ttan solve by arithmetic means,
yet insisting they use formal algebraic technigdess not encourage the development of
algebraic understanding. Such examples dominatey nextbook exercises. In these
simple cases, equation solving need not dependroctwal perception of equations nor
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on the correct manipulation of the equation (vanefen 2003). Using number facts, using

arithmetic inverses and solving equations step loged step, selecting numbers and

‘homing in’ on an answer are useful, appropriatategies. Yet, by exposing students to

arithmetically difficult examples the cognitiverdands on the student are increased. Not
only do they have to cope with the new, formal @pts of algebra, they have also to cope
with opaque arithmetic.

Perhaps the students in the study were ‘doing edgdbut not ‘thinking algebraically’.
They had demonstrated that they could solve simglgtions by providing, in most cases,
correct answers. By exploring their thinking, itchene apparent that the correct answer
may often mask incorrect, or algebraically inappiate thinking. Thinking algebraically
considers relationships between mathematical abjastl the consequences of acting to
change those relationships. If we are to teach dbratgebra, we need to develop the
students’ facility with the processes, their cotaapunderstanding of the structures and
relationships between numbers and their strateginses of the best ‘algebra’ to use in
particular context.

But, do we need to teach formal algebra at allolfto whom? Fey’s technological
vision (1989) has not yet come to pass, but theveoé that transposes and solves complex
equations is available and increasingly accessiiie. skills students need in order to use
that software may not turn out to be the skills ecied in formal, conventional algebra as
is presently taught in school. However, the skiltranslate the ‘jostle and clamour around
us’ into effective and useful algebraic models w&iill be needed. This implies that the
present focus on developing the procedural skillalgebraic manipulations may need to
shift to one on developing students’ abilities toderstand, interpret and represent
problems in algebraic ways.
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