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Students learning the art of solving equations using formal algebraic procedures are usually 
presented with examples that require the application of simple arithmetic knowledge. This 
paper suggests that such contexts do not always encourage students to use arithmetic 
procedures that are algebraically useful or to see the need for formal algebraic techniques. 
Excerpts from interviews with students reveal their thinking and some of the strategies they 
use. Some implications for teaching are suggested. 

Translating the jostle and clamour around us into equations is half the art; solving them the other. 
(Kaplan, R., 1999. The Nothing That Is: a natural history of zero.) 

 
In 1989, Fey predicted that by the year 2000 conventional school algebra would be 

replaced by one which used computer technology and which was grounded in realistic 
applications. Little has changed however in NSW secondary schools. Introductory formal 
algebra (Stage 4) focuses on students developing the conventions for expressions and the 
associated procedures for the manipulation of expressions and equation-solving skills 
(Board of Studies NSW, 2002, p 82 -86). 

Equations express an equivalent relationship between parts of a problem. This is the 
first part of the ‘art’ of creating an expressive and useful mathematical model of some 
aspect of the world around us. Solving equations, however, is often seen as less an art and 
more a matter of following a well-worn procedural path. The reasons for the existence and 
meaning of equations (and expressions) remain something of a mystery to many students, 
at least until they have demonstrated a procedural efficiency in manipulating these 
algebraic creatures. The art of ‘translating the jostle and clamour around’ them is usually 
taught only after they have mastered the art of solution procedures. The conventional 
procedures for solution are taught and practiced with many simple, and simplistic, 
examples of arithmetic equations, although the syllabus explicitly recommends that 

Students need to solve equations where the solutions are not whole numbers and that require the use of 
algebraic methods (Board of Studies NSW, 2004, p 86)  
Research into student’s algebraic understandings, such as those by Demby (1997), Hall 

(2004) and Matz (1982), has been focussed on errors made by students. This study set out 
to explore the thinking of students who had correctly answered algebra items in order to 
determine the types of strategies they used which led to their success. 

Their responses revealed that these successful students still relied mainly on arithmetic, 
intuitive or informal procedures which some described in loosely algebraic terms. 

This paper presents excerpts from such interviews, and discusses some of the thought 
processes of the students and suggests some implications for teaching. 

Background 

Research into the thinking of students as they develop algebraic skills and 
understandings has examined, among other aspects, the difficulties in connecting 
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arithmetic concepts with algebraic ideas (van Ameron, 2003), understanding and using the 
symbolism of algebra (Booth, 1988; Fagnant, 2002), the manipulations of expressions 
(Demby, 1997; Hall, 2004), the concept of the ‘letters’ and the solution of equations 
(Kuchemann, 1981) and the development of algebraic abstraction, particularly the use of 
analogical reasoning (English & Sharry, 1996).  

Equations that students encounter in school are of two types – arithmetic and algebraic 
(English & Sharry, 1996). Many of the equations students are introduced to are of the 
arithmetic type described by English and Sharry (1996). These can be solved by intuitive or 
informal, pre-algebraic techniques such as substitution, guess and check and backtracking. 
Algebraic equations, in the sense used by English and Sharry (1996), require students to 
view arithmetic operators and the equality sign as relating parts of a whole rather than as 
instructions to act, or as indicating a closed answer, as is often the case for the equal sign 
(Horne, 2005). [See also Table 1.] Students also have to accept algebraic expressions as 
meaningful solutions to equations. They must also be able to manipulate algebraic symbols 
as objects in order to modify parts of equations (van Ameron, 2003). Students’ use of 
informal techniques may be more efficacious in developing equation-solving skills than the 
direct teaching of formal algebraic methods (Kieran, 1989), but students have to see the 
need for these formal methods (Booth, 1988). 

How students think about solving equations has been illuminated through analysis of 
their errors (Matz, 1982) and through ‘conversations’ (Demby, 1997). Novice algebra 
students make typical errors and use many informal procedures, which can work in some 
instances, which may be wrongly generalised to others, or which are unable to be 
represented algebraically. In the present study, successful students have been interviewed 
and their strategies for solving equations typical of those presented to students in the 
introductory stages discussed.  

The Study 

The study involved a group of twenty-five Year 9 (third year of secondary school) 
students in the top graded class. Along with a complete cohort of Year 8 and 9 students in 
two other schools, they completed an algebra survey (test) which consisted of forty items. 
Twelve of those items were equations to be solved [Table 1] and which have been adapted 
from NSW Syllabus documents (Board of Studies NSW, 2002) or from text books used by 
the participating schools. No calculators were to be used. The students’ responses to these 
twelve items form the basis of the present study.  

Responses to the survey items were coded as being completely correct (2), incorrect (1) 
or not attempted (0). The level of difficulty of each item has been determined from Rasch 
modelling (correct/incorrect) of responses to the items. [Table 1]. 

Although the students who are the focus of this paper completed the survey in Term 1 
of their Year 9, they had had no further algebra lessons other than those in Year 8. They 
had, reportedly, met the Stage 4 Algebra outcomes (Board of Studies, NSW, 2004, p. 82 – 
86). However, they seemed to be more successful at solving all or most of the equations 
than other top graded Year 8 students who had completed the survey at the end of their 
Year 8 (one term before the students in the study), and who had also completed work that 
would lead to their achieving Stage 4 Algebra outcomes [Figure 1]. The results of the 
students in the study were more nearly consistent with those of other top graded Year 9 
students, at the end of Year 9 [Figure 2]. These students had completed further Algebra 
studies at Stage 5 level (Board of Studies NSW, 2002, p.87-88). 
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Success on each item by those who gave a correct response is expressed as a percentage 
of the number of students in each of the classes. 

Table1 
Survey Items used in Interviews together with Rasch Item Difficulty Levels 

 Survey Number Item Item Difficulty Level 
Items requiring simple number fact recall, integer solutions 

27 If x + 5 = 7, then x  = …? -1.20 
28 If 4y =20 , then y = ….? -0.63 

Items requiring inverse number fact recall, integer or simple fraction solutions 
32 If  10y = 5, y = …? 0.88 
30 If  x   = 12, what is x? 

    4 
0.41 

Items requiring simple, direct computation, integer solutions 
29 What is t  if 2t – 23 = 49? 0.74 
31 Solve 4(p + 3) = 32 1.04 
33 x + 3  = 7 What is x equal to? 

  2 
0.69 
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35 x + x  = 4   What is x equal to? 
      3       

3.07 

Items requiring some algebraic reasoning and/or sound number sense 
36 If  63 = 180 

      x           What is x? 
3.37 

37 Solve:  5a – 4 = 2a + 8 2.10 
34 Solve: x + (x + 2) = (x – 1) + 8 2.35 

Items requiring algebraic reasoning ‘A
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39 If ax = 5, then x = …? 3.94 

 
  

     Figure 1                                                                                   Figure 2 

In audio-taped interviews after the survey, the students were asked to explain what 
went on in their heads as they solved the various equations.  

Students were selected for interview on the basis of survey responses that gave a range 
of scores, their willingness to be interviewed and their having caregiver permission. All but 
one of the students interviewed obtained survey scores above the median when all scores 
were distributed across the students from all three schools. The five figure data for correct 
responses for the school studied were:13, 22, 28, 31, 35 (n=24) The data for the correct 
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responses from all students in all three schools was: 2, 8, 15, 25, 39 (n=222). Detailed 
results for the students who were interviewed are given in Table 2. 

Results and Discussion 

The results of the study are presented in two forms. First, responses to the items by the 
students interviewed are set out in Table 2. Also included are the numbers of correctly 
[corr] and incorrectly [incorr] answered items and the number of non-attempts [n/a] over 
the whole survey. Second, the excerpts from the interviews are given to provide insight 
into the thinking of the students as they dealt with the different equations. Some extra 
equations were presented to the students during the interviews in order to clarify some 
points of understanding. Because of space limitations only those typical responses that 
serve to illustrate concisely a particular point are included. The excerpts from interviews 
are grouped according to the types of equations discussed. Students interviewed are 
identified by a number, and the interviewer as I. 

Table 2 
Results on Items 27 – 39 (except 38) of Students Interviewed 

Item Numbers 

Student 27 28 29 30 31 32 33 34 35 36 37 39 corr incorr n/a 

390111 2 2 2 2 1 2 2 2 1 2 2 1 30 10 0 
390114 2 2 2 2 2 2 2 1 1 1 0 0 30 6 4 
390104 2 2 1 2 1 2 2 2 2 2 1 1 28 12 0 
390113 2 2 2 2 2 2 2 2 1 2 2 1 28 12 0 
390116 2 2 2 2 2 2 2 0 2 2 2 1 23 6 11 
390102 2 2 2 2 1 2 0 0 0 0 0 1 19 16 5 
390128 2 1 1 2 2 2 2 0 0 0 0 1 18 12 10 
390120 2 2 1 2 0 2 2 0 0 0 0 0 17 12 11 
390118 2 2 2 1 2 1 0 0 0 0 0 1 13 16 11 

Group 1: Equations which can be Solved Using Known Number Facts 

Students were asked to describe what went on in their heads when they solved 
equations x + 5 = 7 and 4y = 20. These equations require students to recall one fact, and the 
letter does not have to be operated on (Kuchemann, 1981). Horne (2005) refers to these 
pronumerals as ‘knowns’. Very early in the interview, student 118 admitted:  

Well, I just don’t use the letters that much, and then, just, yeah.  I don’t work with the letters that much. 
Other students described the process as: 

113:Because of the plus symbol, x plus 5, so you go up numbers until you reach 7, that’s 2.  
Other students described their thinking: 

I: Why did you say 7 take away 5? [Q27] 
118: because that’s the number you need to find 5 plus x equals 7, so what’s in between kind of … 
Because if there are two numbers and you take one of them from the answer, then there’s going to be 
the other number, what you need. 

and 
116: Well, twenty-eight’s [4y = 20] pretty easy because I know 4 times 5 equals 20 so y equals 5.  

Typically, when solving these equations, students rely on known number facts to arrive 
at an answer. This type of response cannot be written as an algebraically useful 
representation. Nor does it provide an analogy that can be used to deal with questions like 
those in the following group. 
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Group 2: Equations which rely on Understanding of Arithmetic Relationships  

I: What if I gave you a question like that: 6y equals 7? Tell me what you would do? 
116: um …  
I: So, what are you thinking? 
116: I’m trying to find what they are. 6 from 6, no, … I don’t know. I was trying to find what a 
sixth would equal, but that wouldn’t work anyway. 
I: A sixth? A sixth of what? 
116: Like, I dunno, It wouldn’t work anyway, so. 

This student recognised that the answer would have to be one sixth of something, but 
two points are important here. Although he explained his reasoning in solving 4y = 20 as 
‘you divide 20 by 4’, it would appear that the strategy actually used was to identify the 
known product of 4 and 5, but then rephrase the reasoning in classroom terms, as the 
following student made explicit. 

102: [reads] If 4y equals 20 then y must equal… [Q28]. Well here, I know that 4y is the same as 4 
multiplied by y, so 4 multiplied by y equals 20. Then to find y I divide 20 by 4. 

However, in the equation 6y = 7, because there was no known product of 6 and another 
integer to give 7, the student was unable to support the result of using the arithmetic 
inverse, an algebraically useful concept. Secondly, as the answer was a fraction, not an 
integer, it was clearly one with which the student was uncomfortable. It is worth noting 
here that the syllabus makes explicit that students need to have dealt with such equations 
by the end of Stage 4 (Board of Studies NSW, 2004, p. 86). 

Some students used quasi-algebraic strategies that explicitly relied on seeing arithmetic 
relationships to deal with equations such as t – 48.4 = 201.9. 

I: So, what goes on in this one, t take away 48.4 equals 201.9? What would you do? 
104: 48 point, aahh, I’d do 201.9 plus 48.4, equals t. 
I: Can you explain to me why? 
104: I’m reversing it to find out. If I’m attempting to find out t, I’m not. I can just reverse it. So, I 
can, instead of finding out two hundred and one point nine I can find out t. 

However when asked what reversing does to an equation, this student replied: 
104: Nothing. Well, it reverses… 

The idea of ‘reversing it’ contains seeds of the understanding of ‘inverses’, but it is not 
clear what it is that is being ‘reversed’. As one other student explained when presented 
with questions 30, 33 and 36 [Table 1]: 

111: Well you have to change it around again, like do the opposite. Like it would be. 4 times, 4 
divided by. 12 divided by 4, is x. [Q30]. You have to times 12 by 4 to get what is over 4 … 

It is not clear what ‘the opposite’ is, although this student did get the correct answers to 
each of these questions [Table 2].  

The confusion of ‘opposites’ or ‘reversing’ equations or operations with no idea of the 
mathematical relationship between the parts of the equations is vividly illustrated as the 
student uses the surface structure of the equation to reason analogically, focussing on the 
one feature – that of one number being divided by another: 

111: You have times 7 by 2 and minus 3 from that to find out what x was, in 33. And 36, it 
would be 180 divided by 63. 

Equations such as those in questions 31 and 33 [Table 1] can be solved by students 
‘closing’ each arithmetic step.  

120: um … aahh, so you’d go 7…divided by. No 7 times 2, equals 14. So 14 minus 3 is 11. So it’s 
11. x equals 11? 

Sometimes, the ‘closure’ is not so complete, at least in the explanation. 
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I: How would you go about doing question 29? 
113: I don’t know. I’d be adding 23 plus 49 and getting that answer and dividing by 2. 

The more successful students could deal in a similar way, by closing on each step, with 
an equation such as the following. (The use of the ‘÷’ sign suggests other issues worth 
further investigation.) 

I: Tell me the steps that you would go through to rewrite x plus a over b equals c  
     [(x+a)/b = c]. 
104: Well, first of all I would change it from a fraction to a normal equation, division, and  I’d just 
bear in mind that x plus a over b is the same as writing x plus a divided by b [÷], so then I’d write … 
I: See if you can do it without writing. 
104: OK.  x plus a divided by b equals c, therefore c times b equals x plus a, therefore, c times b 
equals x plus a, … therefore x equals c times b minus a.  

Group 3: Equations Requiring Explicit Algebraic Strategies 

When students were presented with the algebraic equations in questions 37, 34 and39, 
they used some algebraic strategies to transform the equations and then used a ‘guess and 
check’ process.  

104: Well in this one [Q34] I simplify both sides first. 2x plus 2 equals x minus 7… so if 2x plus  2 
equals x minus 7 that means that … [writes]. Doesn’t make any sense. 
I: Why not? 
104: Because 2x plus 2 can’t equal x minus 7 
I: Why not? 
104: Because we are saying two lots of a number plus 2 can’t equal that same number minus 7 
[…]Oh, wait a minute, it’s plus 7, it can work …Yeah, I did it by guess and check I think. I don’t 
know how to work them out, properly. 

Another student was presented in the interview with: 16.5 – 7.3x = 14.2x – 4 
I: What about the first one on that sheet. 16.5 take away 7.3x is 14.2x take away 4? 
116: To find x? um ….  
I: What are you thinking? 
116: Trying to think of a way other than just trying different numbers for x 

The students have realised the need for strategies that are more efficient than the 
informal ‘guess and check’. To use iterative strategies effectively, the students need to have 
a sound number sense. For example: 

120: …63 over x equals 180 [reading]. … It’s just 180 times x. First to find it out you’ve got to go 
63 divided by x equals 180, so 180 times x, I mean, 180 times x equals 63, I think. 
I: Therefore, what’s x? 
120: oh! … 180 times, oh, aahhh … I’m not sure, so I’m doing 180 times x equals 63. So it’s, it’s 
around like a third, around a third. So 63 divided by a third. Well it has to be lower than zero, 
because then it will go into that more than what that number is to get 180. So it has to be around a 
third I think. 

When such a number sense is lacking, the hunt for the ‘right number’ takes 
considerable time (and a calculator). 

102:…and then the next one is 63 …[Q.36]. Firstly I’ve got to find the bottom, the number below 
the fraction, which would, can’t figure it out without a calculator off the top of my head. 
I: What would you ask your calculator to do there? 
102: I’d probably go just 63 and I’d start, I’d probably start, usually I start with um, any number, say 
I start with maybe a three, and then if its absolutely, a number which is very low then maybe I’d try 
63 over 10, if it was a number which was too high then I’d work my way back between something 
that has to be between three and ten. So it takes a while, but I usually I find that the most reliable 
way for me for doing it. 

However, when presented with question 39 [ax =5] the arithmetic strategies, including 
guess and check failed. All of the students interviewed resorted to guess and check when 
dealing with equations that would have required them to use algebraic manipulations if 
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they were less simple, and none successfully answered question 39. Most answered that x 
was 2.5, 1, 5 or 4. All of them, on the other hand (except student 118) answered 10y = 5 
successfully. One student however found it impossible to separate the process and the 
product: 

128: If 10y equals 5, y … … um y equals.. divided by 2. 
I: What is divided by 2? 
128: 10, 10 divided by equals 5, so y equals divided by 2. 

Conclusion 

The responses above provide some insights into strategies adopted by successful 
students to solve typical introductory equations and the mathematical ‘usefulness’ of those 
strategies and raise many points about students’ mathematical understandings as they are 
introduced to formal, school algebra. These were, by several measures, competent 
mathematical students. They were in a top-graded class, scored well on an algebra test of 
uncomplicated, but typical items, and demonstrated a generally sound number sense and a 
facility with number facts.  

However, their explanations gave little evidence that they were using formal algebraic 
techniques to solve equations, although they had been well-rehearsed in those elementary 
techniques. Their Year 8 (Stage 4) teacher had demonstrated the procedures and given the 
students ample practice through textbook exercises. Because of the nature of the equations 
in the survey they could use their knowledge of number facts, arithmetic relationships and 
recursive methods such as ‘guess and check’. These methods appeared to work for some 
students even for questions 37 and 34, possibly because the numbers involved were small 
positive integers. During the interview, even those students who had correctly solved those 
equations in the survey could not do so. It was at this point that these students recognised 
the need for other, more efficient methods to solve some equations. This is the point where 
teaching of formal techniques can begin. 

Some students could transform simple one- or two-step literal equations, using 
arithmetic analogies. However, when they had to deal with making x the subject of 
equations of the form a/x = b, it was clear that in previous examples they acted on the 
surface similarities and ‘did the opposite’, rather than perceive any meaningful 
mathematical relationships, and hence correctly use inverse operations to transform the 
equations. Transformation of equations that are not transparently arithmetic demands that 
students understand the relationships between and within terms. This relational thinking is 
at the centre of algebraic understanding. The conventions of formal school algebra derive 
from a generalisation of arithmetic relationships and arithmetic procedures. But those 
relationships have to be made explicit and the procedures have to be generalisable (Booth, 
1988). Generalisation can only develop from a broad range of experiences. So students 
need to encounter, early on, equations which have other than small positive integer 
coefficients, or solutions. Equations which use the entire set of rational numbers help 
students develop basic arithmetic skills, good number sense and encourage the use of 
strategies that are more efficient and generalisable. This is consistent with Stage 4 syllabus 
expectations (Board of Studies NSW, 2004). 

Presenting students with simple equations, which they can solve by arithmetic means, 
yet insisting they use formal algebraic techniques does not encourage the development of 
algebraic understanding. Such examples dominate many textbook exercises. In these 
simple cases, equation solving need not depend on structural perception of equations nor 
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on the correct manipulation of the equation (van Ameron 2003). Using number facts, using 
arithmetic inverses and solving equations step by closed step, selecting numbers and 
‘homing in’ on an answer are useful, appropriate strategies. Yet, by exposing students to 
arithmetically  difficult examples the cognitive demands on the student are increased.  Not 
only do they have to cope with the new, formal concepts of algebra, they have also to cope 
with opaque arithmetic.  

Perhaps the students in the study were ‘doing algebra’, but not ‘thinking algebraically’. 
They had demonstrated that they could solve simple equations by providing, in most cases, 
correct answers. By exploring their thinking, it became apparent that the correct answer 
may often mask incorrect, or algebraically inappropriate thinking. Thinking algebraically 
considers relationships between mathematical objects and the consequences of acting to 
change those relationships. If we are to teach formal algebra, we need to develop the 
students’ facility with the processes, their conceptual understanding of the structures and 
relationships between numbers and their strategic sense of the best ‘algebra’ to use in 
particular context.  

But, do we need to teach formal algebra at all? If so, to whom? Fey’s technological 
vision (1989) has not yet come to pass, but the software that transposes and solves complex 
equations is available and increasingly accessible. The skills students need in order to use 
that software may not turn out to be the skills embodied in formal, conventional algebra as 
is presently taught in school. However, the skill to translate the ‘jostle and clamour around 
us’ into effective and useful algebraic models will still be needed. This implies that the 
present focus on developing the procedural skills of algebraic manipulations may need to 
shift to one on developing students’ abilities to understand, interpret and represent 
problems in algebraic ways. 
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