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TEACHING MATHEMATICS USING
THE PROCEDURAL ANALOGY THEORY
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The role and value of concrete materials in teaching and learning mathematics is uncertain, yet mathematics
educators tend to assume their use is essential. Is this an act of fatth7 This paper describes a Procedural
- Analogy Theory which attempts to explain the value of concrete materials in the teaching of mathematics.
Given the range of teaching possibilities for using concrete materials to help the learnlng of a particular
concept or skill, this theory. claims to be able to help teachers develop a teaching approach which will be
superior to others. Aspects of both cognitive .science and mathematics education are discussed in relation to
this theory. » - . _
The paper reports on fi ndmgs when the procedural analogy theory was- applted in a number of Year 4
classrooms where Multiba ved Artthmettc Blocks were used to support the teaching and learning of subtraction

algorithms.

An i'mportant goal of mathematics edlication‘ is for students to- develop understanding of what they learn in school
mathematics, to move beyond the answer to a problem. A pedagogical approach widely assumed to support this
goal involves the use of concrete materials in teaching and learnmg The use of such materials-has been touted in
teacher education programs, mathematics education textbooks, school cumculums and academic papers with an
intensity of purpose that scmetimes approaches missionary zeal. Unfortunately anecdotal accounts, systematic
observation of classroom practices, and research in general have been unable to explain the value and role of
concrete materials with any degree of certainty. Mathematics educators-appear to have set aside this question,

perhaps in the belief that it has been answered, or perhaps because there are more fundamental questions that need
to be addressed. Lamentably, the answer seems to lie more in human frailty of pursuing interesting ideas,

endeavouring to keep current and to find more .intriguing questions rather than attempting to find answers to’
pragmatic problems. Given the prosperous days of mathematics education in: the '1960s and 70s, and given the
‘quality of much research in mathematlcs educatlon s1nce that time, it is dlsappomnng to find ourselves in such a
position.. : ~

“This paper analyses aspects of cogmtlve science and mathematlcs edueatlon to explam the rationale and the
detail of the Procedural Analogy Theory. This theory ‘is intended to answer a range of questions about the
effectiveness of concrete materials in teaching and learning. In particular, the theory is a theory of instruction, so
this paper reports on-an application of the theory, in this case the teaching of subtraction algomhms to Year 4
students through the use of Muitibased Arlthmetlc Blocks (MAB).

THE VIEW FROM COGNITIVE SCIENCE
lntelllgent Tutormg Systems, typically costing hundreds of thousands of dollars to develop, have been shown to be
an effective tedchmg medium in a range of areas (Polson and Richardson, 11988; Self, 1988). So why were
students using an Intelligent Tutoring System to learn aspects of arlthmetlc not as successful as the developers of
the system had hoped (Ohlsson Bee and Zeller,. 1990; Ohlsson Nickolas and Bee, 1987)? Answers to this
question include the need for the software to effectively represent or model mathematical concepts and skills, and
for it to provide the opportunity for effective students interactions with the system.

Intelligent tutoring systems are part of the field of artificial intelligence, “and their specification and
development requires multidisciplinary teams to cover aspects of computer science and cognitive psychology. The
" combination of compulter science, cognitive psychology and artlf cial intelligence forms the basis of the field of



336"

Cognitive Scrence In part cognitive science is concerned with declarative and procedural knowledge with the use
-of analogy in: learning, with machine . learning, with plannmg nets and production rules that show the
' mterconnectedness of learning, and with representatrons of the knowledge structure of the domam in’ questron '
_(Anderson, 1985, Holyoak -and Thagard, 1989; Michalski, Carbonell and Mitchell, 1986). And it is these areas of :
study that provide the cognitive science basis for the procedural analogy theory discussed here.

THE V'I:EW FROM MATHEMA’TIICS EDUCATION - BELIEFS

‘Concrete  representation of mathematical ideas is hardly a new idea. Bowen (1972) suggests that as early as
-3000BC. the Mesopotamians were: using.a one~to-one correspondence to perform counting, and we are all familiar
with tally. sticks and with the abacus, though few of us may have actually used these. But how did concrete
representatron come totake on the rmportance it has today" 7

- The movement away from book learning to. a-mote pragmatic approach to education, to Iearnmg through'
experrence gamed momentum from the seventeenth century. through Bacon's work on empiricism, together with
Descartes writings.on ratlonahsm Newton's-scientific empiricism and Locke's rdea of Tabula Rasa. These ‘were
followed by Rousseau's Emile in. 1762, and the writings. of Pestalozzi, Kant and Froebel, forming a body of
philosophy expressing the: 1mportance of the individual, of the innate goodness of humamty, of the. need to respect.
these qualities. in ‘education, and a view of -children as more than simply 'little adults' (Bowen. 1981; Boyd and
King, 1966; Good and Teller, 1969; Mayer, 1973) “These philosophies saw education as being child centred,.and’
requiring ‘the child to be an active learner. In the present century the work: of Dewey, Montessori and the
Progressrve ‘Education Movement have provided this child centred and active learning approach with further
ideological ‘support. Takmg all these. various components together this body of knowledge ‘provides a strong‘
philosophical foundation for the. value of concrete materials i in teachlng mathematlcs as a means. of provrdmg :
child centred, active. learmng

But is this philosophical foundatlon sufﬁcrent reason for usmg concrete materrals in contemporary
‘mathermatics educatlon" Where else can support be found? In 1929 Durell suggested ' 'the use of splits tied up in
bundles of ten, “the use of diagrams to illustrate’ fractions and the use of graphs encouraged the saving: of time,
“better retention and transfer of learning. Breslich (1933), Christofferson (1937) and Taylor (1938) also published -
articles supportive of the use of concrete materials with some  of ‘their ideas pre-empting: contemporary
approaches. So the: use of concrete’ materlals in teachmg mathematics * has been supported for ‘decades in
,mathematrcs education literature. ' We can “also cite _the. work of Praget on concrete operatronal thinking and
Dienes' wrmngs on-‘the structure of mathematlcs to support the .use of concrete matenals and we can drawv
comfort from the position taken by the Nufﬁeld Mathematics Pro_]ect‘s slogan :

1 kear, and 1 forget

" Lsee, and 1 remember
A do, and I understand.
~ (1967a,b) s
But what are we expecting from the use of concrete matenals" Exactly what kind. of mathematlcal ideas are these
materials supposed to represent, and ‘what kind of learning ‘is envrsaged" What research indicates that concrete
representations of mathematical concepts are actually valuable, that they do represent the concepts we intend, and
that they do have a real and measurable impact on students’ learning? And where is the -data mdlcatmg exactly.
‘how concrete representatrons allow the Tearner to better arrange his or her cognitive structure so that learning is
‘more effective?

What there are underlying ldeologres and values about the roles of concrete materials, and that such behels
may be as worthy of merit as empmcal ﬁndlngs It is. possible to debate such values and beliefs, but data cannot
be collected to prove that one view is more correct than another. These are issues fundamental to individual
‘educator’s ‘beliefs: about humanity, about ‘students in particular, and what the mdrvrdual sees ‘as constituting
teaching, learning and mathematics. That is, we use certain teaching approaches and: materials in mathematics
education because we believe in them. ‘'We may seek support for our opinions; but there is-unlikely to be any
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logical neceséity' to accept or reject a particular point of view. Much of the pedagogy ;idOpted by malhematicé '
‘educators, and what mathematics educators tell other mathematics educators about effective pedago'gies in
research publ1cat10ns curriculum development activities and teacher education courses is based on beliefs, with.

the addltlon of selected phllosophlcal anecdotal and empirical evndence

;'THE VIEW F ROM MATHEMATICS EDUCATION - RESEARCH

Resnick -and Omanson (1987) sought to establish the relatlonshlp between performing anthmetlc and
understanding it, especially by illustrating procedural learning - with "well-grounded mathematical principles".
They deveIOped a mapping instruction in which they maintained "a step-by- -step correspondence between the
“blocks and written symbols throughout the problem”. They had 80 fourth, fifth and sixth grade students perform
tasks, both written and using MAB materials, where representations of numbers were constructed and
‘decomposed, and where activities involved addition with carrying, and subtraction with decomposition. After a
-period of instruction, posttest scores showed children taught with the mapping . instruction did not differ-
"signiﬁcantly from children in the comparison group, but in a delayed posttest the mapping instruction group
gained higher scores. All the same, the researchers expressed disappointment at children's levels of achievement,
and concluded that the mapping instruction was not effective in curing subtraction bugs. These findings suggest at
‘least some of our beliefs about the value of concrete materials are questionable. Mathematics educators need to be
concerned with these outcomes, especially since Resnick and Omanson s research- was well designed, is frequently

cited, was conducted by well known researchers and employed what appeared to be a detailed and sensible
pedagogy - yet the use of concrete materials does not appear to have led to much in the way of positive outcomes.

In another lmportant paper, Sowell (1989) reported a meta-analysis-of 60 studies designed to assess the value

‘of manipulative materials in mathematics instruction. The studies ranged from those involving kindergarten
children to those in which college students participated, and employed -a ‘wide range of mampulatlves and
- mathematics topics. Sowelf found that treatment lasting a school year or longer favoured the manipulative g ;,roups' _
but only for the use of concrete materials and not for pictorial représentations. Treatments for shorter periods
showed no difference between the mampulatlve and nonmanipulative groups on either posttest or delayed posttest
scores. :

. Reference to a wider range of research literature simply confirms the uncertain value of concrete materials (for
~ example, Hart, 1989; Hiebert and Carpenter, 1992). Treatment time is an element in teaching and learning, and so
is pedagogy, but one of the difficulties in analysing the literature on concrete materials is the lack of detail given
about the actual teaching methods employed. Statements about an experimental teaching approach contrasted with
a traditional approach give insufficient detail as to the.intricacies and nuances of the learners’ experiences. I
believe it likely that the pedagogy used in some studies could be improved simply through more attention to detail -
- 'in the teaching learning process. For example the procedural analogy theory outlined below provides one set of
guidelines for improving instruction.

- THE PROCEDURAL ANALOGY THEORY

How then can we show that the construction of mcaning, through the internalisation of mathematical sknlls and,
concepts into a richly connected cognitive network, will be assisted by the manipulation of concrete materials? If
teaching is to lead to understanding and to the learning of those standardised written procedures that continue to
be an important goal of schéol mathematics such mampulatlon wnll need to be complemented by a pedagogy that
encourages cognitive re-construction. :

The procedural analogy. theory describes how concrete matenals assist the Iearmng of declaratlve and
procedural knowledge, and movement to the required target behaviour. Simplification, procedural analogy and
symbolism, together with practice, lead finally to automatic responses. The procedural analogy theory is a theory
of instruction, and has its basis in both cognitive science and mathematics education, In addition to the, original
publication concerning this theory (Ohlsson and Hall, 1990), aspects of the theory have been presented elsewhere
(Hall, 1990, 1991, 1992a, 1992b). In solving a particular problem the theory relies heavily on the analogy between



338

the process of acting upon concrete materials representing mathematical concepts and skills, and the  written
algorithm that corresponds to that process. The theory asserts that while concrete materials may be used in a wide
range of ways to achieve a correct answer, there are some ways that will be more effective than others ‘because
they more-closely mirror the desired target: behav1our and these latter ways provide the more effective teachmg
approach.

Table 1 shows one use of MAB materials and the target algorithm that is developed from this material. The
steps emphasrsed both in the use of MAB materrals and i in the target algorlthm are not unique, and must be-

Table1: - Procedrl-ral analogy: MAB_armd iarget procedu-res

| MAB procedure |

0.0428-169 '
- 0.1 Subtract 169 from 4H 2T 8U

| 1.0Process umts .
1.1 "Take 9U from 8U (cannot)
"1.1.1'" Trade for more units
1.1.2  Move IT from 2T to bank,
.7 _bring'back 10U
.13 Join 10U and 8U
: 1.1.4  Recall 10U +8U = 18U
1.2 ‘Take 9U from 18U - -~
1.3 Recall 18U-9U =9U
1.4 Record answer, Ui in answer. space

120 Process tens _
2.1 Take 6T from IT (cannot)
2.1.1  Trade for more tens _
2.12.. Move 1H from 4H to bank,
- - bring back 10T
2.1.3  Join 10T and 1T .
214 Recall OT + 1T = l]T
2.2 Take 6T from 1 IT .
2.3 Recall 11T-6T=5T -
2.4 -Record answer, 5T in answer space

3.0 Process hundreds.
3.1 Take IH from 3H
3.2 Recall 3H-1H=2H
33, Record answer, 2H in answer space

4. 0 Read answer (2H 5T 9U) .

| Target procedure

] 0.0428 - 169

1.0 Process. units - v _
1.1 Take 9 from 8.(cannot)
1.1.1- - Trade for more units
112 Recall2-1=1
1.1.3  Cross out 2, write |
1.1.4  Write I nextto8 -
1.1.5  Recall this is 18
1.2 Take9 from 18
1.3 Recall 18-9=9
1.4 Record 9 in answer space

2.0Process téens _
2.1" "Take 6 from 1.(cannot)
-2.1.1 - Trade for more tens
2.1.2 Recall4 1=3
2.1.3 Cross out 4, write 3
. 214 Write | nextto ]
2.1.5 Recall thisis 11
22 Take 6 from 11
23 Recall11-6=5
2.4 Record 5 in answer space

1 3.0Process hundreds

3.1 Takelfrom?’"
3.2 Recall3-1=2
_ 3 3 "Record 2 in answer space

4.0 Read answer (259) ,
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de\/elopeo by the teacher. Once the teacher has decided on the target behaviour, a teaching sequence can be
developed for the concrete materials that increases the likelihood that learners will structure their own knowledge
in a similar manner.

‘ The procedural analogy theory uses an isomorphism index (I 2) as a measure of analogy between the two
procedures. The index is given by the formula

' (N1 +N2-2)- (D|+D7)

I12 = Ni+N2-2 :

where N1 is the humber of steps in the first procedure, N2 the number of steps in the second procedure Dj the
number of steps in the first procedure but not in the second, and D7 the number in the second procedure but not in
the first. In Table 1, Ny = 25, N2 = 26, D1 = 3 and D) = 4 giving a high isomorphism index of 0.86. Slight
variations in the steps will lead to a lower isomorphism index. The theory argues that the closer the relationship
between the procedure involving the use of concrete materials and the target procedure, the higher the 11 2 value,
so the more-effective will be the value of the concrete materials, and the greater the level of learning outcomes.
That is, the procedural analogy theory allows an analysis of teachmg steps prior to teaching and provides a
method of measuring hkely pedagogical success.

METHODOLOGY
The research reported here involved 110 students, two Year 4 classes in each of two schools where students were
randomly assigned to one of three groups to learn subtraction algorithms through the use of MAB materials. For
" each school the regular classroom teachers taught one group during the period of the research, the researcher
taught the third group. Two of the three groups used a teaching method where there was a high isomorphism index
(High I), one group using expanded numerals in the movement from concrete materials to written algorithm, the
other moving directly from concrete materials to the target procedure. The third group used a method with a lower -
value isomorphism index (Low I), where the teaching approach was acceptable to all teachers in the research, was
a typical teaching approach and one supported by curriculum statements and textbooks. These details are
summarised in Table 2 ‘

Table 2: Teaching groups

' School Group/Teaching Approach Teacher
A High I, expanded :

High1

| Lowl

B : High I, expanded

High1

Low I

[\S IR, TN LUV S I

. The teaching approaches of the two experimental groups differed from.the teachihg approach of the comparison
group in the detail of the correspondence between the actions on concrete materials and the written algorithm, and
in the detail of the guidance and description given by the teacher. '

RESULTS AND ANALYSIS

All students were given a pretest on subtraction algorithms, and parallel posttest and delayed posttest. An analysis’

of variance showed no significant differences in pretest scores between students in the three teaching approaches.

An analysis of variance on posttest scores showed there was a trend for students in the High I teaching approaches

to have higher scores than for students in the Low I approach, but the differences were not statistically significant
*(p < .10). An analysis of variance on delayed posttest scores showed a significant difference (p < .05) in favour of
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the High I teaching approaches-over the Low I teaching approach There was no statlsncal difference in scores
. 'between members of the two groups with High I teaching approaches.

The trend for students exposed to teaching approaches with high lsomorphlsm indices to show greater gains on -
posttests scores than students where the teaching approach had a low isomorphism index is a positive fi ndmg in
terms of the procedural analogy theory, but clearly needs further investigation. It may be that for a range of -
teaching approaches students will not score significantly differently on posttests if the test is -administered
immediately after completion of the topic, and that differences in.test scores resultmg from different teaching

. approaches become evident only over time after instruction has finished. The ‘topic chosen may also explain the
‘sameness of -the posttest scores. That is, subtraction was not a new topic for any of the students involved in this
study, so posttest results may have differed had the topic been new to all students.

The finding that students exposed to teaching approaches. with high isomorphism indices showed greater gains_
on: delayed posttest scores than those students where the teaching approach had a low isomorphism index ‘gives
“some support to the procedural analogy theory and to the longer term value of using concrete materials. These
findings also suggest that the use of concrete materials together with specific pedagogies assist the development of
an effective cognitive structure, one in which concepts and skills are stored in a: meanmgful and efficient. manner
where they can be remembered recalled and reconstructed as necessary.

DISCUSSION

How generalisable is the procedural analogy theory in terms of mathematics toplcs and ages of learners" Does
application of this procedural analogy theory encourage leamers to develop a richly connected network of
cogmtwe structures? Is the cognitive development taking place through the appllcanon of thrs procedural analogy

theory superior to developments using other teaching approaches? - -
This research has generated many questions, there is clearly a need for the research to be replrcated and

further investigation: is' necessary to -assess ‘the:relevance of the procedural analogy theory in other school
mathematics topics. At the same time the research reported here appears to have some potential in facilitating the
desrgn of teaching approaches involvirig the use of concrete materials, -and in helping teachers guide learners. in

the construction of knowledge.
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