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MATHEMATICALLY IN/APPROPRIATE CALCULUS CONCEPTUALIZATIONS
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The study reported here was designed to investigate student learmng in calculus with a focus on language use
and the ways truth and validity are determined. Results reported here are those related to students' processes
of construction of particular mathematics conceptualizations as a result of exposure to three different

- approaches to calculus instfuction:  technique-oriented, concepts-first and infinitesimal instruction. When
students used infinitesimal language and used it in conjunction with everyday language they generally did so
as a foundation by which to construct mathematically valid problem responses. - This finding -indicates that
-instruction emphasising connections between everyday and technical language is likely to guide students to
build mathematically appropriate inter-connected. conceptualizations. Also, the use of infinite magnification
in a variety of problem situations by students who' received infinitesimal instruction demonstrates that
instruction emphasising visual mterpretattons can influence students’ conceptualizations.

A whole body of research in mathematics education in the last decade has focussed on students' interpretations of
- mathematical concepts and processes.” This has included documenting how. "students bring pre-mathematical
experiences into the classroom which affect their understandings of the mathematics" (Tall, 1990; p.49).
‘Researchers have found  that students hold "mini-theories" about -mathematical ideas and that they learn
mathematics in' ways that are "personally reasonable and sensible" (Confrey, 1992; p.122).. ‘That is, students'
“mathematical models, though not necessarily in congruence with those of a teacher or researcher; are reasonable
to themselves. ' As alternative perspectives these models are viable and legitimate within a certain range of
. situations and applications. (For rev1ews of* th1s llterature see Confrey, 1990; Perkins and Slmmons 1987; Driver
and Easley, 1978).

Whether calling students' mathematical models personal conceptions, mini- theorles ‘alternative - theones.
inadequate beliefs or mlsconceptlons it is evident that "the theories and their. forms of argument must be
addressed if students are to come to a more acceptable understanding of the concept" (Confrey, 1992; p.121).
-Consequently, as teachers and researchers attempt to develop learning experiences that will help students
construct mathematically appropriate conceptualizations, they must be informed as to how mathematics might be
effectively communicated. The inherent ambiguities of communication ‘must be. considered, particularly in
relation to the symbolic and verbal language forms that are prominent elements of communication within
mathemaucs classrooms. Thus, there is a need for mathematics educators to consider how students’ constructive
processes and related conceptuahzatxons are medmtul by various mathematical symbols, techmcal and everyday
language. :

. In relation to: students’ mathematlcal representations, an area of mathematics educatlon in which reseamhers :
have identified a persistent and recurring phenomena is that of calculus learners' "misconceptions" of calculus -
concepts. - The term "misconception”is used here.and in. the upcoming discussions, rather than alternative
conception, -personal conception or some other phrase, because it is the term employed most commonly in the -
research literature. Examples of student misconceptions in calculus have been noted with learners on several .
continents and across a-range of topics. In particular, investigations with calculus. students have documented
misconceptions present in their understandings of limits, infinity, continuity, tangents,. derivatives and integration
(for example, Artigue, 1986; Cornu, 1981; Davis and Vinner, 1986; Orton, 1977, 1983a, 1983b; Schwarzenberger
and Tall, 1978; Sierpinska, 1987, Tall, 1989; Tall and Vinner, 1981; Williams, 1991). These investigations. of
student learning in calculus have given insight into students' misconceptions. What is needed now is research into
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how 1nstructlon can better guide and support student learning in calculus The results of the study reported here
have practlcal 1mp11cat10ns in relation to this last point.

DESCRIPTION OF THE STUDY
Research Setting :
The research was a naturalistic study involving three undergraduate calculus classes located at three different
post-secondary institutions in Western Canada. - These institutions included. a large university and two small
private colleges. The course at the university was representative of introductory calculus courses in its content
and an emphasis upon learning techniques for differentiation, integration, graphing and problem solving. In
comparison, one of the colleges used a “concepts-first" approach to instruction in which concepts are explored
mtumvely before introduction of their formal definitions and proofs and before skill development is emphasised.
The second college used an instructional approach which develops concepts intuitively while using infinitesimal
methods related to nonstandard analysis as analytic and computational tools. Inhmtesnmdl methods are the tools
by which Newton and Leibniz first developed calculus in the late 1600's.

The best way to demonstrate how an. infinitesimal approach to instruction differs from the use of methods in
real analysis and in particular from technique-oriented and concepts-first mstructlon is to provide some spe(.m(.
examples of its use. Two appropriate examples are the followmg » :

(1) Limits and thelr precise €9 deﬁmtlon are replaced by the more intuitive notion of l‘rounding off™, denoted

by ~> (an idea students have used since elementary school). (See Robmson (1966) for a complete and
mathematlcally rigorous account of the development of calculus’ using mﬁmtesnmal numbers, called
nonstandard analysis). ’ : :

(2) The derivative is not introduced via rotatmg secants which in'the limit become a tangent line at a point on a
graph. Rather, the value of the derivative at a point is the slope of the tangent line at that point (if the tangent
line exists). This concept of derivative is introduced-after tangent lines (and where they do and do not exist)
have been introduced via the intuitive notion of magmﬁcatlon

. Research Methods
Task-based interviews with 17 students were the prlmary method of inquiry into. the nature and role of students'
language use. These in depth interviews involved students in oral and written responses to a number of calculus
problems focusing on calculus skills and concept interpretations. Students' language use was initially examined
on the broad level of an entire problem response. This examination was done by counting occurrences of a
student's use of symbols and technical or everyday language terminology that were not given in the problem
statement. In relation to symbol use, manipulations or operations with symbols present in the statement of a
problem were distinguished from a. student's use of .a symbolic representation not present in the problem
statement. Results of the counts of students' use of symbols, technical and everyday language terms were used to
determine the nature of their language use, while the role of their language use was determined from -more -
extensive examination of what they said or wrote and. what this language reflected of their calculus
conceptuallzatlons It is this latter extensive examination that is reported in this paper. :
The range of instructional settings allowed partial -examination of the impact of different approaches to
instruction on the nature and role of students' language use, although the small number of students interviewed at
each institution did net permit statistical analysis or definitive answers on the effect of instruction upon students'
calculus learning. The examination of students' problem responses did however give insight into the potentml
ﬂlmpact of each mstructlonal approach on all students learmng

RESULTS AND RELATED DISCUSSION
‘Students' problem responses revealed some important features of their language use, -including: ()
conceptualizations built using infinitesimal language displayed features different from conceptualizations built
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" using traditional calculus language, and (2) whether speakmg with traditional or infinitesimal Tanguage, students

used terminology as tools by which to conceptualise their descriptions and explanations and in these constructions
-pre-calculus language knowledge was prominent. In relation to point (1) it must be noted that ‘students who
received infinitesimal instruction, including those students who had studied some calculus previously using
traditional language and symbols, used symbols and words particular to mﬁnltesnmal calculus. In particular, it
will .be: seen.as this discussion proceeds that infinitesimal symbols served students as objects that could be
concretely represented on-a - graph and referred to and used as tools for construction of an explanation or
justification. ‘

Although symbols did not form a large component of students' language use, w1th more than half the students
using symbolic representations in one third or less of their problem responses, students who received infinitesimal -
instruction made more .use of symbols. Unlike most of the other students, most of the students who received

infinitesimal instruction were able to give symbolic justifications or explanations of continuity ‘and
differentiability. Furthermore, the symbols they used and their corresponding verbal language (both everyday and
“techincal) were pamcular to an infinitesimal approach to mstructron An exampleof one of these responses is the
following:
-(Tanya)
(Problem 5) : .
[5. “For each function grven below, determme if it is continuous or drscontmuous Give reasons for your
' answer]

o  ods y
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=1 T - ° | 2 3>i
a4 B ,
-;, hix)= { -
A x+\ c
.1 3

That any, I'll kmd of do it this way. y at X.. And these two x's dre the same. Ah. If you take any Xx
point and go a little bit.to the left or a little.bit to the nght an infinitesimal amount, it rounds off to y at
that X on the - y-axis:

Flgure 1. Tanya's Response to Probleln 5

In this extract Tanya uses infi mtesrmal language (words and symbols both) to explain the relatronshrp between the
behaviour of a graph and the correspondmg notion of continuity. In doing so, infinitesimal notanon serves as a
primary tool for construction of an explanation. It is a key tool in that interpretation of dx as an infinitesimal
number provides Tanya with something fairly concrete to work with. She easily.visually locates on a graph what '
dx- corresponds to and how the position of dx relates to the behaviour of the graph The role of her use of
infinitesimal notation is both to build and to justify her response. -

" In relation to technical language use, students who received 1nﬁmtesrmal [instruction used- technical language
- to about the same degree as students at the other two institutions, but they used everyday language ‘more.
Althou0h this hndmg dlstlngurshes them from the other students, what distinguishes them more is the content of



262

their technical and everyday language use and the role of this language in describing, ‘explaining or justifying
calculus ideas. These features will now be dlscussed pointing out the nature and role of language in students'
interpretations of calculus problems.-

Students who received mﬁmteSImal instruction generally integrated everyday language more with symbols or
technical language than did the other. students. In comparison, students who received technique-oriented or
concepts-first instruction, although they often. gave valid explanations .of situations using everyday language, did
not as frequently use technical terms or symbols for further, more detailed or precise Justxﬁcatlons In particular,
unless specifically asked to do so, they did not make use of language and ideas related to limits. There were also
. occasions when they used technical terms or symbols but were unable to explain their connections to everyday -
language explanations. ' '

. Another aspect of infinitesimal instruction which was displayed in students' problem responses and which
appeared as important in these responses was.the notion of magnifying a curve. At some point in their interviews
all students who received infinitesimal instruction spoke of infinitely "magnifying" or "blowing up" the graph of a
function. In an infinitesimal approach to calculus instruction magnification is a means by which a function can be
examined "up close". In this process infinitesimal language plays a role in students’ interpretations by orienting
them to construct descrlptlons of a magnified curve. Non-infinitesimal language related to the slope of a tangent
line also served to orient students to descriptions of a curve. However, these descriptions, justifications and
conclusions ‘seldom made use of limit-related language or processes. In comparison, the notion of infinite
magnification has limiting processes built into its use. This feature distinguishes it from traditional slope and
_ tangent line notions in more than one way. First, it is a dynamic rather than static method for interpretation of
graphs. 'Second, magnification makes the limit concept of "close to" accessible. That is, the visual mechanism of
blowing up or infinitely magnifying a curve serves as a visual, physically acce851ble means by which to examine
related limiting notions.
~ The traditional limit concept also has visual interpretations. but these were not regularly used by students who
received technique-oriented-or concepts-first instruction. In fact, the general absence of .use of limit notation or '
terminology by students who received these -approachés to ‘instruction, unless it was specifically requested,
indicates they did not integrate their limit conceptualizations into other calculus conceptualizations. For example,
their responses included explanation of the derivative as the limit of slopes of a sequence of secant lines, but the
relationship of limits and derivatives was then not applied in other problem responses. Use of the notion of
magnification was more regularly applied by students as a tool by which to construct calculus conceptualizations.
In particular, this study found differences in the nature of student problem responses that related to whether or
‘not they made use of infinitesimal numbers or the notion of infinite magnification. A feature of the problem
responses of students who received mﬁmtesmal instruction was that when they. used magnification and related
terminology they did not construct the same misconceptions present in problem responses of students who did not
use infinitesimal terminology (including fhcidents when students who received mﬁmteslma_l instruction did not
use infinitesimal terminology). For example, students who did not use infinitesimal language tended to interpret
_the technical language term "continuous" using everyday. language phrases such as "no:breaks", "no jumps”,
"existing", "being defined" and "not changing". Many of their notions associated with these everyday language
phrases were valid -interpretations -of situations, - although they were not necessarily * valid -mathematical
interpretations. - The. interpretations therefore tended to guide students to. construct mathematically incorrect
justifications or justifications that were used inconsistently. For example, interpretation of the technical language
term."continuous" in terms of ! "existing" led students to construct mathematlcally incorrect justifications. Further,
although interpretation of ' ‘continuous” as "no. breaks" usually oriented students to mathematically correct notions
“related to continuity, it did not do so for all of them. - For example, Doug believed that a "break” in the way a
function is defined constitutes a discontinuity.
-Another- mlsconceptlon displayed by students who did not use the notion of ma;,mﬁcatlon was that non-
uniqueness rather than non-existence of a tangent line implies non-dlfferentlablhty -For example students said
such things as: -
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(Cindy)

(Problem 9) :

[9. The graph of y =F(x) lS glven below. At whrch points’ does the functlon not have a derivative?

Why?) . . : v

Because this is undehned [at a cusp]. Because a derivative means you re takmg the s]ope of a tangent.

But the tangent, it could be here; it could be here, it could be here. It could be anywhere And we don't

‘know where it is.

(Annabel)

(Problem 9)

Derivative is suppose to ah, ona graph the derlvatlve is supposed to be a. tangent line that touches the graph

at only one spot. 'And at a sharp point or an endpoint there it touches it, it can do that in many different

places. So'you cannot define any one derivative.
The students to whom the above intérview excerpts belong gave the correct conclusion that no derlvatlve existed
at a particular point, but their justifications for nondifferentiability were mathematically incorrect. In comparison,
students who employed the notion of magnification to determlne dlfferentlablllty said such thlngs as:

(Gordon)

(i’roblem 9)

“The line has to be continuous. So you wouldn't have one [a tangent] at the endpolnt [pause] If you blow

“that up, ln’nnltesrmally you still have that. You can't draw a tangent to that Then you can't have a

derivative. o ' : ‘

(Tanya) -

(Problem 9) ) o , o _

Right-at this point if you magnify it. You're magnifying the point-and you still have a straight line. In

‘order to have a derivative you needa line. You don't need a point and a line to the left or right of it. ' You -

need a line where you can draw a tangent line and a slope to it. Here, like I said, a derivative just to the

right of it exists [at a point of dlscontmu1ty] Left sorry. Just to the left it exists. Infinitesimally. Right at

that point it doesn t-exist.

(Nadine)

(Problem 9) -
. you_ take the point and you blow it up an infinite amount. And lf you see a straight line theres a

derlvatlve ... You'll still see this. You blow it up and you'll still see a V [at a cusp]. And at this point

there is no deerdthC
The above excerpts show how magnification. of a curve generally served to focus students' perceptlons and
subsequent justifications upon non-existence rather than non- -uniqueness of a tangent line.
- In summary, students who received mﬁnlteslmal instruction used symbols and words partlcular to mﬁmtesrmal
calculus as primary tools to explain or justify calculus ideas. They used infinitesimal language and related visual
notions such as infinitesimal closeness and infinitc magnification so that infinitesimal symbols served them as- -
_objects that could be concretely represented on .a graph and referred to in construction of° an explanation or
~ justification. Students who used infinitesimal Ianguage more frequently than the other students, appropriately
mtegrated technical and everyday language and did not display the same misconceptions present in other students’
responses. ‘All students often gave valid physical interpretations for visually oriented notions such as continuity,
slope or size, but students who used infinitesimal language had both the tools and mechanisms by which to make
different constructions that did not lead to the same misconceptions. In this way, since students who used
infinitesimal language did so as a means to reguldte their- actions, mﬁmtesrmal language made accessible
mathematrca]l y approprlate thought.

IMPLI CATIONS

The implications for calculus instruction of this study's.ﬁndings are twofold:
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(1) -Wthien students used infinitesimal language and used it in conjunction with everyday language they generally
did so as a foundation by which to construct mathematically valid problem responses. *This finding indicates
that instruction emphasising connections between everyday and technical language is likely to guide students_
to build mathematically appropriate inter-connected conceptualizations.

(2) ‘The use of infinite magnification in a variety of problem situations by students who received infinitesimal
instruction --demonstrates- that instruction emphasising visual interpretations - can influence students’
conceptualizations. It can guide students to use physical, bodily experiences as a means by which to articuiate
abstract idéas and construct related conceptualizations. Most importantly, construction of calculus meanings
from the physical experiences of magnification and closeness did not make accessible to students the
‘misconceptions present in the conceptualizations of students who had received technique-oriented or concepts-
first instruction. That is, use of infinitesimal language did not facilitate expression’ of mathematlcally
inappropriate or inaccurate.conceptualizations. _

~ The implications of these points for mathematics education at all levels, not just for the teaching and learning of

calculus, are both relevant and useful. Practical use can_be made of the notion that students can be guided to build
mathematically appropriate inter-connected conceptualizations by instruction emphasising connections between

-everyday and technical language. Specifically, the design and implementation of instruction. should provide

~ students with opportunities to construct conceptualizations through elaboration of their everyday language

meanings. - Use of everyday language intetpretations to ‘describe, explain and justify particular mathematical
situations could then be connected to more abstract symbolic mathematical representatlons '

More importantly, practical use can be made of the notion arising from this study that students Wlll model
mathematical concepts ‘using language forms that reflect their instructional experiences.. In particular,
‘mathematics teaching at all levels should consider that some instructional language forms and related experiences
are ‘more conducive to facilitating students' construction of mathematically correct or appropriate thought, while
rendering inaccessible certain misconceptions. That is, it is possible to-design instructional.experiences which .are
language based and which do not provide students with the vocabulary to frame ‘certain misconceptions. The
experiences and related vocabulary, by inhibiting -certain misconceptions, -facilitate construction of mere
mathematically appropriate conceptualizations. - o <
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