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TEACHING THE UNDERSTANDING OF MATHEMATICS: USING AFFECTIVE CONTEXTS
 THAT REPRESENT ABSTRACT MATHEMATICAL CONCEPTS .

TONY BASTICK
- Mathematics Education
Ballarat University College, Victoria, Australia..

This -paper argues that we do not teach students to understand mathematics.- We only teach them
mathematics, and leave the understanding - or lack of it - up to them. The reason is that the affective
aspects of students’ mathematical experiences - feelings that are essential for understanding increasingly
_abstract mathematical concepts - are, perversely, continually reduced as the mathematics becomes
increasingly more abstract. The two major causes of this anomaly are i) the mismatch between the
structure of .understanding mathematics and its 'logical’ structure mlrrored in mathematics curricula
together with ii) the influence this has, in conjunction with Piagetian theory, on mathematics teaching. The
role of inner affective contexts in organising students' mathematical knowledge, developing their
mathematical intuition, in their learning and applications of mathematics is discussed. It is also considered
how these orgamsatlonal contexts are conceived and developed; and how to explicitly encouraged this
durlng teachtng children how to understand mathematzcal abstractton

_ CONFUSING USES OF 'ABSTRACTION' IN MATHEMATICS AND IN MATHEMATICS EDUCATION
- 'Abstraction’ in mathematics education has been discussed by Dienes A(1989), Ginsburg and Asmussen (1988). This
* is not the same as "abstraction' as used in mathematics (Nolt 1983). I argue that this currently preferred Piagetian
practice in mathematics education is misguided by the confusions of 'abstraction', as -used in mathematics and
'abstraction’, as used in mathematics education.” In particular, mathematics may be described by ‘logical'
~ hierarchies e.g. counting comes before addition, which is the foundation for mu]tlpllcatlon which leads on to
algebra, which is the basis for ... and so on; or categorisation comes before sets, which ‘are the foundation for
groups, which leads on to number- systems, which are. the bases for ... and so on. These hierarchies are used to
describe both mathemiatics curricula and the steps in understanding - and so teaching - these curricula. Sometimes
these steps are described as minute sequential behavioural details, as in the literature on diagnoses and
- remediation in mathematics education. The variations in possible hierachical descriptions simply illustrates that
their ']oglc mere]y reﬂects preferences of the practitioners.

Teachmg Mathematics From the Cconcrete to the Abstract ,
'Good' mathematics teaching currently follows the Piagetian stages of development from concrete sensori-motor
'hands-on', through pre-operational and concrete. operational stages, to abstract formal operations. Mathematics
educationalists  traditionally agree that: "In'terms of learnlng mathematics, the. ablllty to cope with abstractions
would depend on the emergence or development of formal operational thinking" (Orton, 1992). So 'good" maths'
teachers introduce concrete objects and- use them for the purpose of abstracting. mathematics from them.. The_
highest objective of the 'good" maths teacher is to abstract mathematics from real world contexts so that their-
children understand mathematics as an abstraction in the sense of being context independent. Oh that we could go
directly to the abstract rather than being directed by pedagogy through this meandering subterfuge of introducing
concrete examples merely so we may later reject them in favour of their abstract mathematical properties.
Fortunately the social credibility of teaching through applicable maths makes this 'good' teaching practice more
acceptable. For even if our children fail to reach the intended level of abstraction, we have at least served the
utilitarianism of human capital education in skilling them for employment. \

level, Cartesian. coordinates, which. depend on an ‘understanding of algebra, are even less understood and
considered even more comp]ex rarefied and abstract. So abstract describes the dlfﬁculty and complex1ty non-
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mathematrcrans assocrated wrth 1ncreas1ng h1erachlcal levels of mathematics. However, mathematics educators
recognise that mathematics understanding need not follow any such hierachical description of mathematics - for
example a child who can find his row and seat number in a theatre, understands’ ‘much about Cartesian coordinates -
without necessarily understanding the assumed prerequisites of algebra. or even arithmetic. Structural assertions
that 'A' must be taught as prerequisite foundation for 'B' are tautological statements generated by ascription to a
given 'logical' hierachical description of mathematics. A child centered mathematical educator would rather ask
*"Does the child now need to know 'B'?" If the answer is. yes, then it will be found that the:child already has an
intuitive understanding of 'A" and the maths teacher may encourage the child to make this explicit. If the child has
"no intuitive knowledge of 'A' then from the perspectlve of a Chlld centered pedagogy, 'A' cannot be taught - only
1mposed :

Mathematlcal Abstractlon as Context Independent Generalisation

Mathematicians on the other hand, in contrast to non-mathematicians, cons1der abstractron to be generalrsatron,
from particular contexts to context independence. So mathematical abstraction may occur at any level in a
descriptive hrerarchy For example, 7 year old's base 10 arithmétic my- be generalrsed to other-bases and the
properties abstracted for any base 'b'. This meaning of abstractron as generalrsanon of content and strategies from
concrete exemplars to context independence is consistent with Piagetian’theory (Dubmsky, 1986) used by our.
'good' mathematics teacher and operationalised in mathematics education research (Bettge 1992; Gonzalez 1990 .
Reed, 1989; Iben, 1989; Kouba, 1989 and Cobb, 1987) :

Understandmg Mathematlcal Abstractlon :
I believe that the understandmg of mathemat1cs does not. parallel thrs ‘concrete to abstract descrrptron that is used
to describe generalisation in mathematrcs and used to apply Piagetian theory to the teachmg of mathematics - no
" more than .it parallels any particular 'logical' hierachical description of mathematics - as shown’ above. In-
particular, as- pointed out by Ginsburg and Asmussen (1988), purely cognitive - explanatrons of mathematrcal..
~ thinking i ignore the involvement of feelmgs, personal meanings and motivations in mathematical experiences. I
believe that a person's individual understanding of mathematics - no matter how generalised the mathematics - is
always organised by an mcreasmgly personalised mternal contexts mcorporatmg thelr mathematrcal knowledge
and. beliefs. I suggest that mathematlcs educatlon should be concerned w1th how we construct and/change these
mtemal contexts. ' - ' : :
Ina number of areas there has been a persrstent search for units of analys1s appropriate for the descrlptlon :
of the orgamzatlon of knowledge and beliefs. In developmental psychology, in problem solving research; i
work in artificial mtelhgence and in research in expert systems, various approaches have been explored'
These can be divided into two main categories: the specific and the general. Among the speclﬁc kind are
'schemata, scripts, and plans. .. Among the general kind are to be found principles, structures themes, and
Keegan's candidate, thought-fon'ns (Gruber & Davis, 1988, p. 251).. ' '
- Other approaches are Thematic Appreciation Units - TAUs, Explanation Patterns - XPs (Schank 1988)
Generative. Metaphors (Schon 1979) and Networks of Metaphors (Gruber & Davis, 1988). Another way these
approaches may be ordered is on a drmensmn from non-affective to affect-laden. The traditional view of concrete
to abstract parallels affect-laden cognition to affect-free cognition. However, in contradiction to this traditional
Piagetian practice in maths education, "highly intellectual individuals engaged in abstract mental activities resort
to ‘primitive’ imagery to solve their problems." (Mavromatls A. 1987 p. 197). Because these internal organising
" contexts are so affect-laden I call them ‘feelmg symbols'. The literature is replete with examples of hi ghly affect-
laden organisations for the most abstract concepts in art, literature, science and mathematics. ' :
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FEELING SYMBOLS THAT ORGANISE ABSTRACT CONCEPTS IN ART, SCIENCE, LITERATURE -

- AND MATHEMATICS

Feeling symbols in art and literature

Edvard Munch paihted The Scream in 1893. The art critic Robeit Hughes tells us that Edvard Munch's childhood:-
was ghastly. His father was a ranting religious \blgot his  mother a submissive wreck; his beloved sister
Sophie died of tuberculosis, and, as he put it later, 'Disease and- 1nsamty were the black angels on guard at -
my cradle. In my chlldhood I felt always that I was treated in an unjust way, without a mother, sick, and
with threatened punishment in Hell hanging over my head.’ Thus Munch's mam 1mage of farmly hfe was
the sickroom. (Hughes, 1980, p .277).

Similarly, describing his own feeling symbols, Picasso said: "The painter passes through states of fullness and of

emptying. That is the-whole secret of art. I take a walk in the forest of Fontainebleau. There I get an indigestion of

greenness; I must empty this sensation into a picture. Green dominates in it. The painter paints as.if in urgent need

to discharge himself of his sensations and his visions" (Ghiselin, 1952, p. 59). In her analy81s of Richardson's

novel Pilgrimage’, Wallace (1982) highlights the 'garden’ metaphor for women and the 'brow/mouth’ metaphor for

men that Richardson uses as feeling symbols to illustrate gender differences.

. Feeling Symbols in Psychology :

"Jung ... often used the images of water to represent the depths of consciousness and of diving and returning (with.
'the treasure, the priceless heritage’) to represent the growth of self-knowledge and enlightenment." (Shear, 1982,
p. 157). Osowski (1986) studied William James' use of metaphor in producing his Principles of Psychology (over
the 12 years from 1878 - 1890). Osowski identifies four main metaphors James used as his feeling symbols:
stream of thought, flight and perching of a bird, herdsman and fringe of felt relations. Similarly, Gruber and Davis
tell us that: "Locke relied on a small set of mutually complementary metaphors for knowledge. Some of the more
salient ones were as follows: material object, closed space, acquisition, possessron tool or instrument, and wax
tablet " (Gruber & Dav1s 1988 , D. 259) :

Feeling Symbols in S_cience and Mathematics
Keegan (1985) traces Darwin's thought-form of 'gradualism’ in a variety of contexts - change by. the accumulation
of many small or infinitesimal steps. Keegan suggests that the thought-form of gradualism permeated the whole of
Darwin's thinking. Another science example given by Mavromatis. (1987) is "Kepler's comparison of the sun, the
stars or planets, and the space between them to God the Father, the Son, and the Holy Ghost .. Kepler's
_comparison of the planets to the Son-is not merely unusual but entirely irrelevant: there-is nelther external
similarity (the Son is one , the planets are many) nor an internal one (the Son does not 'revolve' round the
Father)... (yet) ... On one occasion he (Kepler) specifically stressed that 'it is by no means permissible to treat this
analogy as an empty comparison; it should be considered by its Platonic form and archetypal quality as one-of the’
primary causes,’ " (Mavromatis, 1987, pp .212-213). Gerald Holton (1973) also chronicles many such affect-laden
organising themes in science and mathematics around Wthh he has written his book "Thematic Orlgms of
Screntn‘“ ic Thought: Kepler to Emstem :

FEEL]NG SYMBOLS - THE INTERNAL CONTEXTS ORGANISING MATHEMATICAL THOUGHT
How feeling symbols orgamse mathematical thought

It has long been generally recognised in psychiatry, though not in tradltlonal maths educatlon that affect is central
to- the organisation. of cognition (Ciompi, 1991). We represent mathematical abstractions by these internal
affective-cognitive contexts which I call feeling symbols. "Even when dealing with highly abstract conccpts one
tends to represent them almost -automatically in a way which would render them 1ntu1t1vely accessible."
(Fischbein, 1987, p.-212). These feeling symbols influence how we learn mathematics and how we use our
~ mathematical knowledge. "What has been shown in this work is that, beyond the dynamics of the conceptual ‘
network, there is a world of stabilized. expectations and beliefs which deeply influence the reception and use of
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mathematical and scientific knowledge." (Fischibein, 1987, p. 206). These feeling symbols direct our mathiematical -
reasoning: "The dynamics of mathematical reasoning - and, generally, of every kind:of scientific reasoning -
include various psychological- components like beliefs and expectations, pictorial prompts, analogies and
paradigms. These are not mere residuals of more. primitive forms of reasoning. They are genuinely productive;,

active ingredients of every type of reasoning." (Fischbein, 1987 p. 212). Also: "what is critical to inferential
behaviour is the context and goals involved in reasoning, not an abstract logical form it may resemble." (Kuhn,

Amsel and O'Loughlin, 1988 p. 19). "Very often, in a reasoning process, the search and solution strategies are
1nﬂuenced by such models functronrng tacitly, whrch are then beyond direct. conscrous control." (Fischbein, 1987

. 203)

Why feelmg symbols orgamse mathematlcal thought

Mathematical feeling symbols condense. ‘huge amounts of information. and have a substantial identification
component. By using empathy and specral-krnesthetrc representation to understand mathematrcs we partially
1dent1fy with mathematical objects I think the instinctive aspects of intuitive mathematical thought - speed, lack -
of conscious effort, personal involvement etc. - result from empathic projection hookrng into the drives. (In the :
case of great: intuitions, this is via the cognitive-affective. bridge of . deep feelmg symbols) condeneatron _
mechanisms facilitate drive discharge” (Rothenberg, 1988, p.. 70); Our instincts and drives direct our reflexive . .
thoughts and actions which are our. mathematical intuitions. Simply, at some level we are the ob_]ects of our
mathematical understandrng The properties of these objects’ are our personal characteristics. During this
1dent1ﬁcat10n when we take part ina problem we behave according to 'our’ characterrstrcs :

How intuitive mathematlcal understandmg develops .

Firstly, -some people have not learnt to - identify. with mathematrcal objects and use spacral ~kinesthetic
representatrons of them, so have not developed mathematical ‘intuition, whereas they may-have developed such
intuition is other areas. Later I recommend: that exphcrtly teachmg such intuitive _understanding - via empathi¢ -
identification and spacial- krnesthetrc representations - should be part of mathematrcs education. -

Initial representation of mathematlcal understanding in the mathematrcally naive is not the same as the
understandmg of the trained mathematician (Dubrnsky & Lewin, 1986). To understand the initial state and’ how it -
changes I 'will liken the initial naive representatron to a small black and white photograph of:the exemplars that -
epitomise the understandrng For example, a child may mltrally tepresent. the idea of 'two' by remembering the
actual two.objects that were used to iilustrate two. The memory is a close likeness of the-objects and there is little

“involvement in the memory. When many- examples of 'two' are known, the life-like photographrc representation
-will change into a more 1mpress10n1st1c picture of, perhaps, the preferred ‘exemplars with the others as shadow
_,1mages As more experiences of 'two' cause the memory to be re-constructéd ‘with empathrc assimilation of the
current experiences, the picture further transmogrifies, gradually on. each: rteratron into a large involving, more
- encompassing, surrealist colour abstract painting of many exemplars.and their many inter-relations - which ‘may
not necessarily be mathematical. Usmg this 'photographic to. surrealist” analogy: a deeper understanding of ‘two' is '
like living in an 1drosyncrat|c surrealist world of exemplars, pairs, bondrng, mirror symmetrles evenness, parents,
Noah's ark, opposites, complementarmess, double. hops, yin and yang - all one's being is emotronally centered, .
during the. moments of ideation, in the living surrealist world of personal affect-laden connotations ‘of ‘two'. If the .
memory could be re-constructed without assimilation of new experience, then the representatlon would ossifies
rather than transmogrrfy ‘Schank's Explanatron Patterns - XPs - aré similar to such ossified representations:
“understanding requires an active memory, full of knowledge based on repeated ossified experiences and also full
- of novel experiences that are unmerged with other events." {Schank, 1988, p. 221).. However, memory never .
~ exactly re-constructs itself because there is always a different internal context that co-constructs it. Its more like
the game of whrspers, where each re- -construction . slrghtly changes the previous representatlon So repeated
memories transform the original experience into-a surrealist copy which is the abstract feeling symbol Albert
Rothenberg gives the following example from the long term psychoanalysis of a poet. It shows how, over a long



97

K perlod of creative work re- constructmg the memory and assmulatlng new relevarit experrence - the initial feelmg
symbol can transmogrify.
Similarly, prior to the creation of the metaphor 'the branches were handles of stars', that author had thought
only of the sound and shape connections between branches and handles. ‘Afterward, he became dlmly
aware of images of branchlike maternal arms encompassing a child. During further creative work related to
. this metaphor, the fire like intensity of the star led to conscious thoughts of warm, erotic sensations and to -
unearthed unconscious fantasies of erotic sensations in the- held child. The unravelling stopped short
‘however of connecting himself to the held child. (Rothenberg, A. 1988 p. 70) '
" I believe mature mathematical understandings are, like those above, srrmlarly repeated transmogrifications built.
on mathematical contexts - e.g. feelmgly of motion and perspectives of space - that may have been experienced
simultaneously with infantile instincts. Cooney (1991) considers that fundamental intuition of mathematics, the
abstraction of the relation of n to n+1, can be understood in terms of such infant experiences. These older mature
- feeling symbols may contain irrational mtentlonahty contributed by the chllds early experlences Rothenberg
(1988) says: : '
On the basis of recent research on memory and development there is reason to believe that all chlldhood '
events are construed in adulthood in accordance with the child's level of cognitive and affective development at
the time they occurred (one citation given). At certain levels of development for instance, only sensory and motor
aspects of an event will be apprehended and experienced.’ This plays a role in the substance and structure of -
memories (Rothenberg, 1988, p. 178).
. Such mature and pervasive feeling symbols are most widely accessible in regressed prlmary process thinking.
Then they may direct cognitive-affective associations that guide mathematical solutions and strategy selections.
Suler (1980) relates that: "Rapaport (1950) in fact described primary process as a drive organization of memory;
~ since all objects, images, and experiences are organized according to their relationship to some instinctual
tension.” (Suler, 1980, p. 144). "Psychodynamic theory predicts that children who can permit drive-laden material
to surface in fantasy and play, and who can cognitively integrate and master that material, should be open to ideas
and flexible in their problem-solving approach. Thus, they should be better learners than children who do not
actively mtegrate emotional material.” (Russ, 1982, p. 570). This indicates that apphcatlons to mathematical
education should utilise "ego-regressing : environments' - like storytellmg Only context -relevant reduced
: perspectrves of a deep feehng symbol are available in more focused thought.

RESEARCH EXPLORATIONS
" To explore the internal contexts subject's use to orgamse their mathematical knowledge I ﬂrst asked 80 tertrary
maths education students to imagine.that they were born again and grew up in 'Flat Land' as either an acute angle
-.or an obtuse angle: Which one they would prefer to be and why? I also asked them to role play their chosen
identity with appropriate sounds (not words), body shapes and movements so that the other angles could easily tell
which they were. The second part of the investigation was similar except that they had to choose to be one of the
- following: pi, fractions, division, functions or graphs. : -
Many subjects represented. the open or closed shapes of their chosen  angle. Many used cross- model transfer
from sharp angle to sharp sounds - and similarly for the sounds made by obtuse angles. Some subjects
incorporated the aerodynamic properties of the acute angle in their point first rapid movements, whereas other
acute angles moved in rapid, tiny steps. The most interesting -representations were complete character
identifications - €.g. an acute angle is slim and sophisticated, an obtuse angle is open and friendly. ' ,
The second part of the investigation involved the understanding of more abstract mathematical concepts. The
results showed, as above, that subjects organise their understanding of the properties of mathematical objects -
through highly personalised identifications based on empathy and spacial-kinaesthetic representatlons ‘sometimes,
derived from cross-model transfer. In addition, because these ‘mathematical objects were more abstract this
investigation allowed for various levels of understanding and dlfferent emphases in understanding. The results
clearly showed subjects had these. differential levels and emphasis of understanding. The lowest levels indicated -
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only symbol recognition - sub_|ects would take the shape of the symbol e.g. pi would stand with legs apart and
arms horizontally to the side. The next level of understanding was represented by being an exemplar e.g. a subject

folded double wouid be the fraction ‘one-half'. The next higher level of understanding would be one property of
the object e.g. the subject who was pi pulling his-infinite tai},behind him, or an unfinished movement representing

a fraction. The highest level of understanding was shown by a holistic representation of a personality. whose

characteristics were defined the subject's identification with properties of the object e.g. snobbish and haughty. or

evil and dangerous. It was interesting that low level symbol representation accompanied movement to Tepresent

lack of understanding e.g. a pi that jumps erratically, disappears from here and turns-up there. Whereas ' stationary' -
represented certainty e.g. 'bar-graph' subject was statlonary because he was, "more definite, easier to read, easner

to get information fromi me, than if I was moving". :

The ‘emphases subjects gave to the representation of their understandmg indicated strengths weaknesses,
misconceptions, personal priorities the object held for them and the way their understanding was likely to
correctly or incorrectly evolve e.g. a 'fraction" subject shdttering does not emphasise the equality of the fractional
parts, a 'fraction’ subject with independently moving torso and legs emphasised rules to.change the top and bottom

_numbers, a 'fraction’ subject with an arm hidden was incomplete.

Another important result was the wealth of metaphors subjects used -to orgamse their understanding at all
levels of mathematical abstraction. These could be suggested to other students, when teaching the relevant
mathemaucs as opuons for orgamsmg new understandmg e.g. bar graphs are going up and down stairs.

CONCLU-SIONS FOR MATHEMATICS EDUCATION .

The construction of mathematics understanding need not follow the 'logical' hierarchy of a curriculum, nor the
‘particular to context independent’ generalisations of mathematics, nor the ‘concrete to formal operational
abstraction' of Piagetian pedagogy. In contrast to traditional Piagetian practice it should be recognised that
internal affect-laden contexts ‘are essential organisers of intuitive understanding of mathematics at all levels of
abstraction, that these feeling symbols drive new learning and mathematical applications. Children should be
taught how to-develop these personalised contexts. through such techniques as encouraging identification with
mathematical objects using empathy and spacial-kinaesthetic representations of their properties. At the moment
‘we do not teach children to understand mathematics, we only -teach them mathematics and leave the:
understanding - or lack of it - up to them.
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