
43 

LEARNING ABOUT QUADRATICS IN CONTEXT 
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This paper discusses one ~f three case studies to investigate students'conceptualizations of quadratics by 
J:o[ving quadratic contextual problems. The theoretical framework which guided the study was 
tonstructivism. The methodology was teaching interviews between a researcher and student solving 
problems. A multi-representational software, FUNCTION PROBE, was available asa too/ to aid students in 
lheir problem solving. The results showed that using realistic situations as prolJlem contexts invited " 
multiplicity of interpretations and methods for defining quadratic functional relationships. By reasoning 
empirically from the problem context, students conceptualized quadratics relationships iteratively and in terms 
afsummation in contrast to t~e most common view of quadratics as a product of two tinear variations. 
Further, requiring students to verify and justify their strategies by cross-referencing between multiple 
representations of functional relationships and problem context led them to construct viable schemes to 
characterize quadratics in terms of rate of change, dimellsionality, and symmetry. 

Current trends in mathematics education today (NCTM, 1989) recommend that students explore patterns and 
tonctional relationships using multiple representational systems (tables, graphs, equations, and diagrams). and 
examine interconnections between representational systems. The constructivist perspective encourages mathematics 
educators to focus more on what students say and actively do when solving mathematics problems. (Confrey, 
(1990il). Researchers have found that a" number of students experience great difficulties in understanding the 
essentials of the function concept (Dreyfus & Eisenburg, 1984; Malik, 1980) and in applying the formal set­
theoretic definition to real I ife examples. (Monk, 1989; Lave, Smith & Butler, 1988). Because of the current 
practice of introducing the formal definition first before doing real life applications, many students only view 
functions as a rule of correspondence between domain and range. In contrast, functions as covariance between 
varying quantities which is more retlective of its historical development and more applicable in realistic situations is 
often neglected and de-emphasized except in the applied sciences. . . 

THE STU[)Y 
This study was conducted to investigate the use of contextual problems to encourage a developmental understanding 
of functional relationships in general and quadratics in particular. (Contextual problems refer to problems with 
context selected from realistic situations that students would encounter in their everyday experiences.) Three high 
school students and one university student were selected for the study using apre-test which tested their traditional 
knowledge of linear and quadratic functions. 

THEORETICAL· FRAMEWORK 
The constructivist perspcctiv~ based on Piaget's theory of cognitive development was the guiding theoretical 
framework for this study. In particular, its use of the assimilation and accomrnodation processes to explain huw all 
individual acquires knowledge. For example, an individual interacts dialectically with the situation or object 
through retlective abstraction until the individual has come to know the situation or object well and is able to 
internalize these actions as mental operations. (Kaufman, 1978; Steffe & Cobb, **). 
The epistemology of constructivism is based on the philosophy that knowledge is NOT a mirror image of an 
ontological reality. Instead, knowledge is rooted in:human experiences, and is constructed to make sense of human 
experiences. The starting pointis the knower who builds his or her conceptual knowledge solely on the basis of 
his or her experiences and actions .. Human constructions are in terms of schemes or systems of schemes which 
may be continually re-organized and modified or transformed through social interactions, negotiations of meanings, 
and communications with others. Hence, within this perspective, mathematics could be viewed as having more than 
its definitions, theorems, proofs, and its logical relationship, it would also include its form Qf representations, and 
its evolution of problems, methods of proof and standards of evidence. (Confrey, 1989). 
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METHODOLOGY 
the methodol,o,gy was teaching interviews between a researcher and a student solving a contextual problem 
Students solved four contextual problems before doing a post-test and a final interview, The.type and nature 01 
questions during the teachingintcrview were guided by students' responses .. Each student was gi venampJe tirne le 
solve eachpr<)blem. Students -bad available to them a multi-representational software: Functi(;}fl Probe (with. a table. 
calculator and graph multi.:.linked windows) (Confreyet. ai, 19R9) on the Macintosh for thei:r us~ a tool in problem 
w~ '.' ....... ..' .' 

Teaching interviews involved three two-hours sessions 'per week f{)r six weeks. Each session was audio.- and 
video-taped. The interviewer consistently noted down: (i) students'significantmoments particularly when st.udents 
fOI1llulated viable . schemes; (H) cycles of pro blemati cs and subsequent (tentative or otherwise) resolutions; (iU) 

. students; rationales fortheir answers; and (iv) students' verbal and written representations of theirideas. 

RESULTS 
This paper discusses one of three case studies conducted to investigate students' conceptoalizations of quadratic 
functional relationship by solving contextual problems. The first paper, Afamasaga~Fuatai (l992a), discusses 

'. Mary's. iterative conceptualizationsofquadratic~ and how she used ralesof change (Ay and A(Ay») to highlight 
inadequacies of one algeb.raic representation to represent her preferred interpretation. In. pursuing her preferred 

. interpretation. she examined linear Ay and constant MAy} values which she later affirmed. to be characteristic of 
qpadtatic functional relationships. Mary also c<?Rstructed and further developed a SCheme, by reasoning emprically 
from the contex;t and subsequent numerical patterns, to predict coefficients A and B of a quadratic function: f( x} = 
Ax2 + Bx + C in terms of maximum point; (This issimih~r to the formal formula fQr calculating the axis of 
symmetry iilterms of A and B.) The third paper (Afilmasaga-Fuata\ 1993} will discuss the case of Bob a senior 

· high school student who conceptualized quadratics as covariations that maximize (or minimize) when the two sets of 
· values.: x' andyate in a ratio equal to the ratioot" their rates of change: Ax and Ay . 
In contrast, this second paper will discuss Nan's strategies par:tkularlyin how she. developed her iterative 
concepiualizatioil of quadratic relationships to a more elegant andefficient representation as a product of two liriear 
variations .. While doing this, she developeG a viable scheme for predicting the original quadratic. function in terms. of 
rates of change (Ay· andA(Ay), and like Mary, aiso characterized q.uadratics as variations With linear Ay and constant 
A(Ay)(;tO). ". . . . .. . 

Given the avocado problem as. shown below: 

AVOCADO PROBLEM 
Farmer loe has records showing that if 25 avocado trees are planted, then each tree yields 500 avocadoes. (on 
the average). For each additional tree planted, the yield decreases by to avoeadoes per tree.· Determine the 

. number of trees that would maximize total yield.' 

NaninitiaUyinteI'preted the loss of fruits conceptuaHy to be the. sa~e· for all trees .. However, in attempting to 
represent.tbis algebraically, she used; an iterative eooceptualization that closely reflect~ her procedural actions of 
taking off 10 fruits from the newest tree and then 10 more off old trees as generalized by the tollowing: 
So =8n-l + (500;]:0)- lO(n~l); for n total trees .......................................... (I) 

· where sn and 81'1-1 represented current and previous total yields. She explained thaJ this is equivalent to taking HJ 
offevery. tree each time a new tree was added. For example: . 

"it doesn't really matter if you take ... 30 off 1 tree ... and 20 of another or something ... on average it's all 
the sameo~ee you take. care of that ... so that equation still works." 

However, after a few more calculations, Nan realized that her iterative strategy was a long and tedious process. 
Thus, after expressing a preference for a more sophisticated method for predicting maxilTlum total yield, Nan 
conjectured that perhaps she could utilize the numerical pattern of the differences (Ay}between her iteratively 
calculated s total yields to predkt the original total yields. Nan, however, found that her difference equations were 
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Jl()LJnuch help either at this point. (It was not until much later on that these difference equations became significant 
i~ predicting the original quadratic function.) 

sy pursuing a different approach, Nan represented her second conceptualization of total yields as: 

TY = 12500 + 5OO(n-25) - 1On(n-25) ................ : ........................................... (2) 

in which loss is the same for all trees.ll!ld is subtracted all at once instead of doing it differentially and iteratively as 
in her<firstinterpretation represented 'by Sn. Nan appeared happier with this representation as it allowed her to 
predict yields for any value of n. Nonetheless, ins'tead of using it to determine maximum yield 'immediately, Nan 
chose to reconcile her two interpretations: Sn and TY algebraically as she firmly believed that iteratively subtracting 
loss of fruits per additional tree had to be the same as taking them all off ,at the same time. Nan then spent some 
time manipulating numerical values and equation sn to effect a reconciliation of the two sets of total yields until she 
eventuallymodifiedsn to: 

sn = 12500 + 5OO(n-25) - lO(n + (n-I) + (n-2) + ..... + 26) ............... : ......... (3) 

Nan also pointed out that the discrepancy between this new form of So and the formula TY is with the last term 
1On(n-25) and 1O(n+(n+(n-I)+ ... +26). Nan's problematic then was to represent the summation: 10(n+(n+(n-
1)+ .. ;+26) as a formula. Nan tried but was unable to develop a summation formula. In addition, she found that 
total yields generated by the modified Sn and formula TY were not the same, instead, the discrepancies increased with 
increase in trees. 

When asked how she would decide the better representation given the problem context" Nan generated average 
yield values by dividing total yields by trees. Subsequent values showed that average yields frQm the TY formula (b 
in Table I) were more consistent with the loss of 10 in the context than those generated by the iterative Sn. (a in 
Table). Fimilly, she chose formula TY to be the better representation of the context as shown: 

s = 12500+500(n-25)-IOn(n-25) .. , ................................................................. (4) 

A verage Yields 
When asked for an alternative method of generating average yields, Nan, reasoning empirically from initia'I 
conditions, predicted that: average yield == (500- lO(n-25». This new average yield formula was then extended to 2ive 
an alternative formula for calculating total yields as: 

Total Yield: s' = n(500- lO(n-25» ...................................................................... (5) 

Nan immediately commented that this total yield equation was "more elegant and efficieflt, and much easier to work 
with and involved less flumber of ope.ratiofls" tha,n her carlier formula TY in (2). 
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Table I ,Comparison of Average Yields Using s &TY -Strategies . 

n 

tree 
.·.mJl1lber 

25.00 
2:6.00 
27.00: 
28.00 
29'.00~ 

30.00 
31.00 
32.00 

total yield 

12500.0() 
12740.00 
12910.00 
13190.00 
13400.00 
13600.00 

. 13790.00 
13970.00 

a=s/n 
average 

uieldoer 
SOD.OO 
490.00 
480.31 
471.07 
462.07 
453.33 
444.84 
436.56 

. ty* 

'adjusted 
valuesJor 

f2S00.00 
12740.00' 
12960.00 
13160.00 
13340.00 
13500.00 
13640.0'0 . 
13760.00 

b=tylrt . 

. average 
uieldoer 

500.00 
490.00 
480.0'0. 
470.00 . 
460.00 
450.00 

.. 440.00 . 
.430.00 

~ had formula ty = 12S00+S00(n-2S)-1 On(n-2S) 

First DifferenceS (Ay) . ..... . . 
With her mOre elegant forms of total yield formulas and difference equations for various context variations, Nan was 
asked to revisit an earlier problematic of developing a scheme to predict totalyields using differences. By comparing' . 
the new simplified total yield equations in Table 2 below, Nan found that the coefficient of(n,25) term in equation . 
b was consistently twice the coefficient of the 02 term in the total yield equation as shown: 

A(Ay) = 2(coefficient ofn2) ....................... : ................. , ......................................... ; ..... (6) 

Table 2 - Nan's Tab1eWith Total Yields in Short Form 
Function . Total Yield Difference Equations 

I TY == -lOn2 + 750n D = 240-20(n-25). 
2 TY = ~6n2 + 650n' . b::: 344-12(n-25) 
3 TY = -20n2 +. 1000n D = -26-40(n-25) 

A(Ay) 
-20 
-12 
-40 

However, while struggling to identify a similar relationship between the.constant term in D and n term of TV, Nan 
notieed that tJ.y (OT D differences) could be generated by using a foittlula such as: 

Difference: D == tJ.Yl +A(Ay)(n-25) .. , .............................................. ''' .......... : .......... (7) 

where Ay] is the fitSt Ay value in the sequence corresponding to the y values of x=O and x=l, A(Ay) is the second 
difference (difference of Ay); arid n represented total trees. 

SHnplifying her difference equations to: DlO V = 740-20n compated to TY 10 == -IOn2 +750 and D20 ·;".980-40n 

compared to tY20~·~20n2+1000n, Nan re"affitfued herreiationship in (6); and further pOinted out that the 

VT~eSUbSCriPtfor 0 and TV, at this point, is to distinguish between the different 10ssrat~s.For 
example, DlO and TV 10 refer to equations for 16SS of 10, This notation will be used for the loss of 
20 and 6 also. . ,. 
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coefficient of the n2 term would be half of .1(.1y). After further reflections, Nan noticed that the sum of coefficients 

of the n2 and n terms in TY equalled the constant term in equation D. This relationship was further verified with 

function 2 and its corresponding equations of: TY 6 = -6n2+650n and D6 = 644-12n. 

For discussion purposes, coefficients of n2 and n terms in total yield equations were labelled A and B 

respectIvely to give the general form: TY = An2 + B; and constant term in equation D was E. For example: 

{)= Ay I + .1(.1y)(n-25) = l.1y I ~ 25.1(.1y)] + .1(.1y)n = E + .1(.1y)n ..................................... (8) 

Comparing the two general t()rms:TY = An2 + Bn and D = E + .1(.1y)n, and numerical patterns, Nan predicted that: 
E= A + B. where coefficient B would be: . ' 

B = E- A = E - ·.1(.1y)/2 ........................................... , ..... : ...... , ................................. (9) 

With persistent probing, Nan extended her pattern recognition strategies until she eventually generated two powerful 
Ways of predicting the original total yield equation using difference equations as shown by her schemes in (6) to (9). 

DISCUSSION OF RESULTS 
Evidently, Nan's initial conceptualizations, developed empirically from the context, had evolved from an iterative 
sum into a more concise and elegant form as represented by the product of average yields and trees primarily as a 
result of her own evolving problem solving strategies. Her subsequent interpretations of the problem context and 
her subsequent representations of her procedural actions led to alternative but viable re-conceptualizations of 
quadratics' as: (i) iterative sums, and (ii) sum of functions in contrast to the common view of quadratics as a product 
()f two linear variations. ' . . 
I. Quadratics As Iterative Sums. Nan 's iterative conceptualization of total yield was as: 

Total Yield = Previous + Yield from 
Yield newest tree' 

s = s + (500- 10) 
n n-I 

or s = s + 500 
n n-I 

Loss from 
old trees 

I O(n-l ).; ................. , .................... ( 1 0) 

IOn ..................... : ..................... (11) 

Jnt;0ntrast, given the context and intended interpretation of losses from all trees at the same rate of 10 per additional 
i<~~e per tree and her more elegant total yield formula, (denoted by c for discussion), total yield expressed as a product 
is:.total yield: c = n * (500-1 0(n-25)). 

Nan: s =s +500- 10n=s +(500-10)- IO(n-l) 
. n n-I n-I 

26 12S00+S00-26(10)= (SOO-10)-2S(IO) 
27 12740 + SOO - 27(10) =(500 -10) - 26(10) 
28 12970 + 500 - 28(10) = (SOO -10) - 27(10) 
29. 13190 + SOO - 29(10) = (SO{) -10) - 28(10) 

12740 
12970 

·13190 
13400 

Product:c =c +150()- 10(n-25)1- 10(n-l) c=n(SOO-IO(n-2S) 
n 11-1 . . 

26 12500+ (500- 10(1)} -25(10) =26(490) 
27 '12740+ (500- 10(2)} -26(10) =27(480) 
28 12960+ (500-10(3)} -27(10) =28(470) 
29 13160+ (500-10(4)} -28(10) =29(460) 

Figure 3 - A Comparison of Iterative Methods sand c. 

12740 
12960 
13160 
13340 
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Toi/lllstrate the legitimacy and viabilityoftheiterativeconceptllalization of quadratics, Nao's strat.egyin (1<) for 
.the first 4 additional trees is compared to valllesgenerated by the re-conceptualized iterative form of equationc in 
Figure 3 above .. Clearly, Nan'siterativesstrategy .represented a potentially viablealternatiyc conceptualization. 
With a slight modification however in the interpretation of loss from newest tree,Nan's strategy couldparalleJ that 
of the iterativec.Forexampie, Nanneedsto reflectthe variahleloss duet() the addition of the new tree somewhere 
in her representation of average yield from newest tree. This could he doneeitherinthelossasin (500~IO(n-25»)of 
theiteratjve c version, or with the "expected" average yieJdfrom tree to ~ree as in (500;. 10«n-25)- I) - 1O).Sil1ce 

· Nan insists· on .taki~g ") o off from the newest tree each time a tree was added, " she wouldneedt~)·· incOl;porate the 
val'iablelosseffectpnthe'lexpected" average yield while keeping her loss for newest tree .ataconstant Was she 
preferr;ed. . ... . . .. 

2. Quadratics As a Sum of Functions. Nan's TYformula suggested a second viabJe,aiternative view of quadratics 
asa sUl110f a constant, linearfunction.anda simple quadratic function I in contrast to the .common pr:oduct view. 
For ex.ample, 

Total ¥ieJd = CONSTANT + LINEAR QUADRATIC 
. FUNCTION . FUNCTJON .................................. ;.(I3) 

Nanis lengthy struggle to reconc.ile her two strategies (sand TY)waspartly because of the arithmetic errors she was 
carryi ng throughout 'her subsequent ~calculations, and problematic ·offinding a summation formula. 

3, ,Differenct;Eguations .. Nan's most significant.construction washer difference-equation scheme which predicted 
· the'original.quadraticfuflctionusing rates of cbange [Ay and A(Ay)] values. Nan was the only student of tbe four 

who represented differences (Ay) rilgeb~aieally. Forexampl~,byexpressingthe linear Ay values of quadratic 
variations as a linearJunction,D=Mx +E, shecouldpredictcoeft1cients A andBof the original quadratic {t,inction: 
y = Ax2 TBx + C.SpecificaHy,A = M/2 where M = A(Ay) andB = E- A. Coefficient C could be determined by 
ftndingthe difference between predicted values (using only A ana Bof quadratic function: y= Ax2 + Bx) andactuaf . 

· value-saspredicted from the context; or, by findingthe y-intercept. . 

USE OF CONTEXT 
Data from Nan's case analysis support the use of realistic situat,ionsas critical sites for students' mathematizing 
activities. Nan,gi¥fm therealisticcoritext .and not being aware that it could he ,modelled by a quadratic fUnction,(jid 
not .immediately conceive .of total yields as the product of average yields and trees. Instead she adopted an iterative 
strategyofg.eneratingtotal. yield~. In the :course of her struggles with her vario,!s· problematicsand arithmetic· 
errors, she inv'estigated the colicepts of rates of change,summations. and m uJti pIe representations toa much greater 
extent than the case would have -been in atraditionalpresentationoiquadratic functions. Evidently, solving 
problems with .realistic contexts within a constructivisticperspectivecan provide students with the opportunity to 
conjecture and deveJop their own intuitive conc~1?tualizationsinto more formalized schemes that are equally viable 
· andevenparaHel thos.e of formal mathematics..Unquestionably,weUchosen realis~ic contexts is a powerful. site for 
1I1u.s;trali,ng the inter-r.elationships ofmathemaiics concepts that is missing from traditional, textbook context-free 
problems. ,. . . , . 

'1'81:;1\111£8 OF· QUADItAT'ICFUNCt'IONS 
TpeinterviewerinitiaNYQrganizedherown conceptualizations of quadratics by using three themes as suggested hy 
;Col):frey &Smith (1991); (1) rates of change, (2)sy,mmetfY, and (3) dimensionality; Bridly, (see Afamasaga­
Fuata'i(,l99.2) fora fun discus.sionoftbis),quadratics fUIl.ctional relationshtps have linear Ilyand constant (#0) 
A(Ay) values, line symmetry, and dimensi().ftality factor 2. Nan. used ,all three themes in her characterizations of 
q,uadraticfunctions in contrast to Jinearones,and in her various schemes for predicting maximum points, intercepts 
andoFi.ginal quadraticfunctions.. 

1The simple quadratic function is in the form of a product of two tinearfunctions: y =10m(m-25). 
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CONCLUSIONS _ _ 
Nan's iterative conceptualization of quadratics indicated that students' so caHed errors in problem solving could easily 
be alternative, rather than erroneous ways of viewing a problem. Knowing and understanding the genesis of 
students' interpretations, and strategies at a deeper level would provide useful guidelines for the design and 
development of better contextual problems that: (1) facilitate diversity of interpretations, (2) are challenging enough 
to motivate students to want to solve them, (3) invite multiple solutions, and (4) embed mathematical concepts that 
are often difficult to understand by students. The formalization of mathematics concepts, definitions and formulas 
could develop ~ students have had a chance to construct their own schemes and conceptualizations of the 
mathematics embedded in a context. 

The interviewer-student interaction eventually led to students' construction of more consistent resolutions and 
viable schemes. Although this kind of interaction is not viable in a normal class setting with a 1 :30 teacher-student 
ratio, it is, nonetheless, important for identifying schemes students find useful in- understanding mathematics 
concepts; and for considering how to make this kind of interaction occur more in educational settings. 
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