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LEARNING ABOUT QUADRATICS IN CONTEXT

KAROLINE AFAMASAGA-FUATA'
National University of Samoa
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This paper discusses one of three case studtes to- mvesttgate students conceptualtzattons of quadratics by
solving quadratic contextual problems. -The theoretical framework which guided the study was
constructivism. The methodology was teaching interviews between a researcher and student solving
problems. A multi-representational software, FUNCTION PROBE, was available as a tool to aid students in
théir problem solving. The results showed that using realistic situations as problem contexts invited .
multiplicity of interpretations and methods for defining quadratic functional relationships. By reasoning
empirically from the problem context, students conceptualized quadratics relationships iteratively and in terms
of summation in contrast to the most common view of quadratics as a product of two linear variations.
Further, requiring students to verify and justify their strategies by cross-referencing between multiple
representations of functional relationships and problem context led them to construct viable srhemes to
characterize quadratics in terms of rate of change, dimensionality, and symmetry.

Current trends in mathematics education today (NCTM, 1989) recommend that students explore patterns and

functional relationships using multiple representational systems (tables, graphs, equatlons and -diagrams), and

examine mterconnectlons between representational systems. The constructivist perspective encourages mathematics

educators to focus more on what students say and actively do.when solving mathematics problems. (Confrey,

(1990a). Researchers have found that a number of students experience great difficulties in understanding the

essentials of the function concept (Dreyfus & Eisenburg, 1984; Malik, 1980) and in applying the formal set-

theoretic definition to real life examples. (Monk, 1989; Lave, Smith & Butler, 1988). Because of the current
practice of introducing the formal definition first before doing real life applications, many students only view

functions as a rule of correspondence between domain and range. In contrast, functions as- covariance between
varying quantities which is more reflective of its historical development and more applicable in reallstlc situations is

often negle(.ted and de-emphasized except in the applled sciences.

THE STUDY
This study was conducted to investigate the use of contextual problems to encourage a developmental understandlng

of functional rélationships .in general and quadratics in particular. (Contextual problems refer to problems with
context selected from realistic situations that students would encounter in their everyday experiences.) Three high
school students and one university student were selected for the study using a pre-test which tested their traditional
knowledge of linear and quadratic functions. ‘

THEORETICAL - FRAMEWORK

The constructivist perspective based on Piaget's theory of cognitive development was the &'mdnw theoretical
framework for this study. In particular, its use of the assimilation and accommodation processes to explain how ah
individual acquires knowledge. For example, an individual interacts dialectically with the situation or object
through reflective abstraction. until the individual has come to know the situation or obje(,t well and is able to
internalize these actions as mental operdtlons (Kaufman, 1978; Steffe & Cobb, **).’

The epistemology of constructivism is based on the philosophy that knowledge is NOT a mirror image of an
ontological reality. Instead, knowledge is rooted in-human experiences, and is constructed to make sense of human
experiences. The starting point is the knower who builds his or her conceptual knowledge solely on the basis of
his or her experiences and actions. Human constructions are in terms of schemes or systems of schemes which
may be continually re-organized and modified or transformed through social interactions, negotiations of meanings,
and communications with others. Hence, within this perspective, mathematics could be viewed as having more than
its definitions, theorems, proofs, and its logical relationship, it would also include its form of representations, and
its evolution of problems, methods of proof and standards of evidence. (Confrey, 1989).
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METHODOLOGY :
The methodology was teaching interviews between a researcher and a student solving a contextual problem

Students solved four contextual problems before doing a post-test and a final interview, The . typ(, and-nature ol

questions during the teaching interview were guided by students’ responses. - Each student was given ample time tc

. solve each problem. Students had: available to them a multi- -representational software: Function Probe (with.a table.
calculator and braph multi-hinked wmdows) (Confrey et al, I989) on the Macintosh for their use a t()ol in problun
solving. '

Teaching mterv1ews involved three two-hours sessions per week for six weeks. Edch session was. audlo- and
video-taped. The interviewer consistently noted down: (i) students’ significant moments particularly when: students
formulated viable ‘schemes; (ii) cycles of problematics and subsequent (tentative or otherwise) resolutlons (iii)

~students’ ranonales for therr answers, and (iv) students verbal and wntten representdtlons ot therr ideas.

” RESU LTS
This paper discusses.one of three case studles conducted to investigate students’ conceptuahzatlons ot quadratic

functional relationship by so]vmg contextual prob]ems The first paper, Afamasagd—hua{al (1992a), discusses
Mary's iterative conceptualizations of quadratlcs and how she used rates of change (Ay and A(Ay)) to highlight
‘inadequacies of one algebraic representation. to. represent her preferred interpretation. In-pursuing her preferred
‘interpretation, she examined linear Ay and constant A(Ay) values which she later affirmed to be characteristic of
quadratic functional relationships. Mary also constructed and further developed a scheme, by reasoning emprically-
from the context and subsequent numerical patterns, to predict coefficients A and B of a quadratic function: f(x) =
Ax2 +Bx +C in terms of:maximum point. (This is similar to the formal formula for calculating the axis of
symmetry in terms of A and B.) The third paper (Afamasaga -Fuata'i; 1993) will discuss the case of Bob a senior
- high scheol student who conceptuahzed quadraqu as covariations that maximize (or minimize) when the two sets of
“values: x and'y are in a ratio equal to-the ratio of their rates of change: Ax and Ay
In contrast, this second paper will discuss Nan's strategies particularly in how she. developed her iterative
 conceptualization of quadratlc relationships to a more elegant and efficient representation as a product of two linear
variations.  While doing this, she developed a viable. scheme for predicting the original quadratic function in terms of
rates of change (Ay and A(Ay)), and like Mary, also characterrzed quadraucs as- varratlons with Imear Ay and constant

A4y (#0)
Given the avocado problem as shown below:

AVOCADO PROBLEM
Farmer Joe has records showmg that if 25 avocado trees are planted, then each tree yields 500 avocadoes (on
the.average). For each additional tree planted, the yield decreases by 10 avocadoes per tree.. Determine the -
_number of trees. that wou]d maximize total yield.-

Nan initially interpreted the loss of fruits conceptually to be the same for-all trees. However, in attempting to
represent this algebraically, she used an iterative conceptualrzatlon that closely: reflects her procedural actions of
taking off 10 fruits from the newest tree ‘and then 10 more off old trees as generalized by the following:

Sn =S$p-1  + (500-10) - 10(n-1); for n total trees............ erereeene i el ie et )

-where sy and sy_1 represented current and previous total yrelds She explamed that thw is equwa]ent to taking 10.

off every tree each tlme anew tree was added. For example:

"it doesn't really matter if you take .30 off 1 tree ... and, 20 of anether or sornething ... on average it's all
the same once you take care of that ... - so that equati.on stitl works."‘

However, after a few more calculations, Nan realized that her iterative strategy was a Iong, and tedious process.
Thus, after expressing a preference for a more sophisticated method for predicting maximum total yield; Nan
conjectured that perhaps she could utilize the numerical pattern of the differences (Ay) between her iteratively
calculated s total yields to predlct the original total yre]ds Nan, however found that her. difference equations were
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niot much help either-at this point. (It was not until much later on that these dnfference equations became 51gmﬁcant
in predicting the original quadratic function.) :

By pursuing a different approach, Nan represented her second conceptualization of total yiélds as:
TY = 12500 + 500(n-25) - 100(n-25)................ oo (2)

in which loss is the same for all trees and is subtracted all at once instead of doing it differentially and iteratively as

in her first interpretation represented by sp. Nan appeared happier with this representation as it allowed her to '
predict yields for any value of n.. Nonetheless, instead of using it to determine maximum yield lmmedlately, Nan
chose to reconcile her two mterprelatlons sp and TY algebraically as she firmly believed that iteratively subtracting
foss of fruits per additional tree had to be the same as taking them all off at the same time. Nan then spent some
time manipulating numerical values and equation sp, to effect a reconcnhatlon of the two sets of total le]dS until she

eventually modified sy, to:

sp = 12500 + 500(n-25) - 10(n + (n-1) + (n-2) + ..... +20)iiicreiiineenen, 3)
Nan also pointed out that the discrepancy between this new form of sp and the formula TY is with the last term
10n(n-25) and 10(n+(n+(n-1)+...+26). Nan's problematic then was to represent the summation: 10(n+(n+(n-
+..+26) as a formula. Nan tried but. was unable to develop-a summation-formula. In addition, she found that
total yields generated by the modified sn and formula TY were not the same, mstead the dlscrepanues increased with
increase in trees. '
When asked how she would decide the better representation given the problem context, Nan generated average
yleld -values by dividing total yields by trees. Subsequent values showed that average yields from the TY formula (b
in Table 1) were more consistent with the loss of 10 in the context than those generated by the iterative sp. (a in
Table 1). Finally, ‘she chose formula TY to be the better representation of the context as shown:
{

s = 12500+500(n- 25) e L) N S )

Average Yields '
When asked for an alternative method of generatmg average yields, Nan reasoning empirically from initial

conditions, predicted that: average yield = (500-10(n-25)). This new average yield formula was then extended to give
an alternative formula for calculating total yields as: . :

Total Yield: s = n(500-10(n-25))............... SO (5)

Nan immediately commented that this total yleld equation was "more elegant and efficient, and much easier to work
with and involved less number of operations” lhan her earlier formula TY in (2).
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_ Table - Companson of Average Ytelds Using s &TY- Stratcglt,s

n | s | *3:"n T tyx | bety/n

l _ tree total ui"e;Id | average adjusted average
number 1 __ | uield per | walues for_ meld oer

25.00] 12500.00] 500.00] 12500.00] 500.00,
26.00{ 12740.00] 490.00] 12740.00f  490.00|
27.00| 12970.00| 480.37| 1296000  480.00
28.00[ 13190.00] 471.07] 13160.00] = 470.00[
29.00| 13400.00| 462.07] 13340.00]  460.00
30.00| 13600.00] 453.33] 13500.00; ~ 450.00
31.00| 13790.00] 444.84] 1364000 .440.00{
32.00| 13970.00] 436.56] 13760.00)  430.00

*y had formula ty = 12500+500(n-25)-10n(n-25)

First Differences (Ay)
With her more elegant forms of total yield formulas and differenice equatlons for various context variations, Nan was

~asked to revisit an earlier problematic of developlng a scheme to predict total yields using differences. By companng ‘
the new simplified total yield equations in Table 2 below, Nan found that the coefficient of (n-25) term in equation

D was consistently twice the coefﬁclent of the n2 term in the total yield equation as shown:

A(Ay)—2(coeff|c1ent of n7-) ............ i ........ i d6)

Table 2 - Nan's Table With Total Yields in Short Form - :
Funcuon -~ Total Yield _ : Difference Equatlons ' A(Ay)

! - TY =-10n2 + 7500 ~ D=240-20(n-25). 20
2 : TY =-6n2 +650n ©. D =344-12(n-25) -12

3 ~ TY =-20n2 +1000n D =-2040(n-25) -40

However, while struggling to identify a similar relationship between the constant term in D and n term of TY, Nan
“noticed that Ay (o'r D differénce‘s) cOU’ld be generated by using a forinula such as: :

Difference: D = Ay1+A(Ay)(n L N STTTUIRION 1 )
‘where Ay is the first Ay value in the sequence corresponding to the y values of x--(')band x=1, A(Ay) is the second

difference (difference of Ay), and n represented total trees.
Simplifying her dlfference equations to: D]()V 740-20n compared to TY 19 =-10n2 +75() and D = 980- 4()n

compared to TY20 = -20n2+1000n Nan re-affiried her relationship in (6), and further pomted out that the

V-The subscnpt for D and TY, at this point, is to distmgwsh between the different loss rates For
-example, Dyg and TY1q refer to equations for loss of 10 Thts notation will be used for the loss of

20 and 6 also.
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cocfhc:ent of the nZ term would be half of A(Ay). After further reflections, Nan noticed that the sum of coefﬁcnents
of the n 2 and n terms in TY equalled the constant term in equatlon D. This relationship was further verified with
function 2 and its corresponding equations of: TY(, -6n2+650n and Dg = 644-12n.

For discussion purposes, coefficients of n2 and n terms in total yield equati'ons were labelled A and B
respectively to give the general form: TY = AnZ + B; and constant term in equation D was E. For example:

D= Ayl' + A(Ay)(n‘25) = 8y - 250(a9)] + AAYN = E + AAYN..cocroo. )

Comparmg ‘the two g:neml forms:TY = An2 +Bnand D=E + A(Ay)n, and numerlcal patterns Nan predlcted that:
E = A + B. where coefticient B would be:

B=E - A =F = AAY) 2o 9)

With persistent probing, Nan extended her pattern recognition strategies until she eventually generated two powerful
ways of predicting the original total yield equation using difference equations as shown by her schemes in (6) to (9).

DISCUSSION OF RESULTS

Evidently, Nan's initial conceptualizations, developed empirically from the context, had evolved from an iterative
sum into a more concise and elegant form as represented by the product of average yields and trees primarily as a
result of her own evolving problem solving strategies. Her subsequent interpretations of the problem context and
her subsequent representations of her procedural actions led to alternative but viable re-conceptualizations of
quadratics as: (i) iterative sums, and (ii) sum of functions in contrast to the common view of quadraucs as a product
of two linear variations.

1. Quadratics As Iterative Sums Nan 's iterative conceptuahzatnon of total yleld was as:

Total Yield = Previous + Yield from - L.oss from
Yield " newest tree old trees S
s = s + (500-10) - 111 (10)
n n- ,
or s = s + 500 - ON eee et ar e (1
n n-1I

In contrast, given the context and intended interpretation of losses from all trees at the same rate of 10 per additional
tree per tree and her more elegant total yield formula, (denoted by ¢ for discussion), total yield expressed as a product
is: total yield: ¢ = n * (500-10(n-25)). : v

Nan: s =5 + 500 - iOn =s.  +(500- 10)- 10(n-1).

n n-l n-1 -
26 - 12500 + 500 - 26(10) = (500 -10) - 25(10) 12740
27 12740 + 500 - 27(10) = (500 -10) - 26(10) 12970
228 12970 + 500 - 28(10) = (500 -10) - 27(10) 13190
29 . 13190 + 500 - 29(10) = (500 -10) - 28(10) . 13400

Product: ¢ =¢ | +1500 - 10(n-25)] - 10(n-1) c¢c= ﬁ(S()()—l()(n-25)
' n n- : , . ’ .

26 12500 + {500 - 10(1)) - 25(I()) = 26(49())‘ 12740

27 © 12740 + {500 - 10(2)} - 26(10) =27(480) 12960
28 12960 + {500 - 10(3)} - 27(10) =28(470) © 13160
29 13160 + {500 - 10(4)} - 28(10) =29(460) - - 13340

Figure 3 - A Comparison of Iterative Methods s and c.
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To #lustrate the Iegmmacy and vmblhty of the iterative conceptualization of quadratics, Nan's strategy in (10) for
_the first 4 additional trees is compared to values generated by the re-conceptualized iterative form of equation ¢ in
-Figure 3 above. Clearly, Nan's lteratlve s strategy represented a potentially viable alternative conceptualization.

With a slight modification however-in the interpretation of loss from newest tree, Nan's strategy could parallel that
. of the iterative c. For example Nan needs to reflect the variable loss due to the addition of the new tree somewhere
“in her representatlon of averageyield from newest tree. This could be done ¢€ither in the foss as in (500- 10(n-25)) of
the iterative ¢ version, or with the "expected" average yield from tree to tree as in (500.- 10((n- -25) - 1) - 10). Since
_Nan insists on: takmg "10 off from the newest tree each time a trec. was added," she would need to-incorporate the
variable loss effect on.the ' expected" average 'yield while keeping her loss for newest tree at a (,onstant 10.as she

preferred.

2. ‘Quadratics As a Sum of Functions: : Nan's TY formula suggested a second viable, alternative view of quadratics
as a sum.of a constant, lmear function-and a 51mple quadratic functmnl in_contrast to the commeon product view.
For example,

- Total Yield = CONSTANT + LINEAR - '‘QUADRATIC ,
- FUNCTION CFUNCTION ..o (13)

Nan's lengthy struggle to reconcnle her-two strategies (s and TY) was partly because of the afithmetic errors she was
carrying throughout her subsequent caleulations, and problematic of finding a summation formula.

3. ,,Differen(,e Eguations. Nan's most significant construction was her difference-equation scheme which predicted
the original quadratic-function using rates of change [Ay and A(Ay)] values Nan was the only student of the four

‘who represented differences (Ay) algebraically. - For example, by expressing the linear Ay values of quadratic
variations as a linear function, D = Mx + E, she could predict coefficients A and B of the orlglnal quadratl(, function:

y= Ax2 +Bx +C. Spe01f cally, A=M2 where M = A(Ay) and B =E - A. Coefficient C could be determined by

finding: the difference between predxcted values (using only A and B-of quadratic funulon y= sz + Bx) and actual :
values as predicted from the context; or, by finding the y-intercept. : ‘ .

USE -OF CONTEXT

Data from Nan's case analysis support the use of realistic situations as critical sites for students' mathematizing
activities. Nan,.given the realistic coritext and not being aware that it could be modelled by a quadratic function, did
not immediately conceive of total yields as the product of average yields and trees. Instead she adopted an iterative
strategy of generating total yields. In the course of her struggles with her various problematics and arithmetic
errors, she |nvest|gated the concepts of rates of change summations, and multiple representations to-a much greater
extent than the case would have been in a traditional presentation..of quadratic functions. Evidently, solving
problems - with reali istic contexts within a constructivistic. perspectwc can provide students with the opportunity to
conjecture and develop their own intuitive conceptuahzanons into more formalized schemes that are equally viable
-and -even parallel those of formal mathematics. ‘Unguestionably, well chosen realistic contexts is a powerful site for
illustrating the inter-relationships of mathematics concepts that is missing from traditional, textbook context-frec
problems. ' ' ' '

THEMES OF QUADRATIC FUNCTIONS

The interviewer initially organized her own conceptualizations of quadratics by using three themes as suggested by
Confrey & Smith (1991): (1) rates of change, (2) symmetry, and (3) dimensionality. - Briefly, (see Afamasaga-
Fuata'i (1992) for a full discussion of this), quadratics functional relationships have linear Ay and constant (#0)
A(Ay) values, line symmetry, and dimensionality factor 2. Nan used all three themes i in her characterizations of
quadratic functions in contrast to linear ones, and. in her various schemes for predicting maximum points, intercepts

and original quadratic functions.

The simple -qUadraﬁc functilon is in the form of a product of two linear funetions: y = 10m(m-25).
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CONCLUSIONS
Nan's iterative conceptuallzatnon of quadratics indicated that students' so called errors in problem solving could easﬂy

be alternative, rather than erroneous ways of viewing a problem. Knowing and understanding the genesis of
students’ interpretations, and strategies at a deeper level would provide useful guidelines for the design and
development of better contextual problems that: (1) facilitate diversity of interpretations, (2) are challenging enough
to motivate students to want to solve them, (3) invite multiple solutions, and (4) embed mathematical concepts that
are often difficult to understand by students. The formalization of mathematics concepts, definitions and formulas
could develop after students have had a chance to construct their own schemes and conceptualizations of the
mathematics embedded in a context .

The interviewer-student interaction eventually led to students' construction of more consistent resolutions and
viable schemes. Although this kind of interaction is not viable in a normal class sémng with a 1:30 teacher-student
ratio, it is, nonetheless, important for identifying schemes students find useful in understanding mathematics
concepts; and for considering how to make this kind of interaction occur more in educational settings.
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