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The representation of part-whole relations that amebodied in fractional numbers
continues to be a problematic area of learningniany children. In this study | examine
this problem with a ten-year old child by analyzimg mappings between the language of
fractions, area models and symbols. The visual tsddehis study were built and modified
with computer manipulatives calledavabars. Results of analysis showed that the
participant experienced difficulty in mapping syrtibaepresentation of selected fractions
to the area analogs.

Fractions provide teachers with insight into depetents in children's understanding
of numbers and relations among numbers. These stadelings are built on both
children's personal experiences, intuitions andhédrknowledge taught in the classroom.
Fractional numbers provide important prerequisdaceptual foundations for the growth
and understanding of other number types and algelimanking in later years of their
school and adult life. The complex nature of fraas continues to present difficulties for
many young children in primary schools (Lamon, 199éck, 2001; Anthony & Walshaw,
(2003).

Significance of the Issue

The representation of part-whole relations that em&odied in fractional numbers
continues to be a problematic area of learningm@my children. The study of these
representations continue to be an area of intdimstresearchers because children’s
understanding of the part-whole relations direattpacts on their ability to unitise parts.
While the emphasis on the development of multiptelets for fractions has considerable
support, there is a need to examine children’sor@ag with and the evolution of such
models. Children who are able to build and conui#érent models of fractions can be
considered to have developed a deep understandifrgations as a class of numbers.
Thus, whether children can relate parts of one inodk that of the others is an important
guestion for classroom practice and research. Ine\aew of research in fraction
understanding, Pitkethy and Hunting (1996) comnekttiat

Because the part-whole and ratio subconstructs baem shown to be fundamental to rational

number development, further research in the ardaitidl fraction concepts is needed in order to
show how the two subconstructs related in the draftational number understanding. (p. 34)

| examine the above problem by providing descrigi@f mappings generated by a
child working with the aid of a computer manipwaticalledJavabars The principal
research question is ‘What is the nature of mappiagout part/whole relations that
children could generate withitavabars?'The different mappings that are produced by the
child are expected to inform researchers about other children might connect whole
number understandings with fraction number reptesiens and the utility of computer-
generated objects to assess the quality of chilllkerowledge about fractions.

241



Conceptual Framework

An interdisciplinary approach is adopted in thespré study in that work reported here
draws on both cognitivist and socio-cultural pecsppes about learningThe reasoning
about fractions with concrete objects is analysede hn terms of the framework of
structure mapping (Gentner, 1983). According te frmmework, an analogy is a mapping
from a base or source to a target. Elements irb#s® are mapped into elements in the
target in such a way that relations in base angetacorrespond. Relations are mapped
selectively, which means those relations that eimtr a coherent structure. Levels of
structure mapping can be distinguished by the ceriyl of the relations that are being
mapped. From the socio-cultural perspective, th@naf zone of proximal development
(ZPD), Vygotsky (1978), is invoked in the analyas a way to explain how mapping as
portrayed by Gentner can be elucidated betweenléd ahd a more senior member of the
mathematics community.

Modelling of Part-whole Relations in Fractions

Modelling entails the development of constructdudimg part/whole constructs for
fractions. During this process children need to rbapwveen fraction analog (area/ set
models), the fraction name and their referents, @&l fraction symbol. English and
Halford (1995) analysed complexity of mathematitatks in terms of dimensions.
According to this analysis fractional numbers dntaio dimensions, and analogical
reasoning in this instance involves working witlotdimensions. Thus the interpretation of
fractions is seen to be more complex than that loblev numbers that are 1-dimensional
entities. The modelling of fractional numbers calket many forms including mappings that
children make between the dimensions and the abjbat are used to show the mappings.
The notion of ‘x parts out of y equal parts’ is anedel of fractions. The relation between
x and y needs to be mapped into the parts thasteaded in a figure. It is important that
children make a distinction between shapes thasalpeivided equally and those that are
subdivided unequally before they can associatedxyaim their reasoning about the links
between these numbers and the corresponding padtsvholes in the figure. Children
need to consider the numerator and denominat@iation to one another.

In the interpretation of relations shown in theaaemalog, children must consider a
number of relations jointly in order to interpréetfraction represented by the analog. In
essence, this involves a system mapping procegereBthe children can determine the
fraction represented by the shaded portion of tbdef) they must recognize that the parts
are equal. They must then identify the total nundfgrarts and map this number onto the
name of fraction (e.g., eight equal parts — eighthee number of parts shaded must then
be identified. Determination of the fraction thatshaded involves coordinating both items
of information to yield the fraction 3/8 (Englishi8alford, 1995, p. 130).

The area modelling of fractions constitutes a feeccanalog. The concept of inclusion
is entailed here because the shaded parts, togeitihethe unshaded parts, are included in
the whole. The salience of the whole in this anafegans the unshaded parts will tend to
be ignored.

Computer Generated Objects in the Development aftien Concepts

The complexities of fraction concepts have drivems researchers (Hunting, Davis &
Pearn, 1996) to consider how best to design legrexperiences involving computers that
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would assist children to demonstrate the p-w mhetiunderlying fractions. Recently, a
team of researchers from the University of Georggegs been investigating children's
understanding of fractions with the aid J#vabars(Olive, 2000). The software has been
primarily developed to examine the type of représ@ons of fractions constructed by
children. The software provides children with methat help them draw bars of different
shapes that can be modified in a number of waysiristance, a given bar can be divided
into equal or unequal parts that in turn could ezitbe filled with different colours or
isolated from the parent bar. Since its developm#mtabars has been used to examine a
range of learning issues that involve fractionambers (Olive, 2002). In a more recent
investigation, Olive (2003), analysed the on-scraetions of a third-grader in order to
examine his strategies for simplifying and addiragfions. These strategies were argued to
be based on the child’'s Generalised Number Sequeokeme which involved ‘the
transition from a ‘ones’ world to a world of comjgesunits’ (p.421), again drawing our
attention to the notion of unitising.

Method

The depth-interviewing approach was used to collata. Depth interviews are
appropriate for field data-gathering processesgesi to generate narratives that focus on
specific research questions (Miller & Crabtree, 999This approach was used in the
present study because it allowed the researchieicts on data that were relevant to the
guestions of potential mappings that a child migiristruct with inputs while maintaining
a degree of openness for the respondent.

Participants

A number of students from a suburban school in raliatvolunteered to participate in
the study. In order to highlight the persistencéeafning problems, | report findings from
interviews conducted with one of the participatoigldren, Carl. Carl had studied whole
numbers and fractions within the Number Strand loé tNew South Wales K-6
mathematics curriculum in the previous two yeargmiary school. At the time of the
present study Carl had completed the topic on imastin Year 5. Carl's teachers
recommended that he was articulate and one whodifédulties with understanding
relations between the whole numbers that appdaadtions.

Tasks and Procedure

The aim of study was to document knowledge abaoattisns and reasoning that
children display withinJavabars Two fraction partition tasks were developed fbe t
purposes of assessing children’s knowledge andom@ag about fractions. The tasks
focused on children’s understanding of part-wholelatronships, and how this
understanding was represented in analogs gendmatlavabars

For the purposes of the first task (Problem 1), baos were presented on the computer
screen. The first bar on the left was not parteérepresenting a unit. The second bar was
a copy of the first bar except that it had two dees: a) it was divided into four equal
segments, b) two of the segments were colouredawn. Gtudents were required to write
the fraction for the grey part, and talk aboutTihe whole bar on the left-hand side was
provided as an extra support for students to focuthe whole.
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The second task (Problem 2) was similar to Prolderygain two bars were provided
on the screen. The first bar on the left was thehar that could aid students’ attempts to
compare the wholes. The second bar (on the righ$) identical to the first except that it
was segmented into two unequal parts. The smader(plue) was one-seventh the size of
the given unit bar. Students were asked to namdraetions that might be represented by
the blue part. Further, each student was askeeistatieir conjectures about the fractional
parts with the aid ofavabars Students could activate the ‘break’ button onrttenu and
separate the smaller of the two segments. They@ubsequently move this blue bar and
align it along the unit bar or superimpose it or timit bar. Alternatively, the students
could carry out similar comparisons with the largegment (red). The ‘break’, and ‘copy’
buttons on the computer screen could be used éaltiove moves, and students showed
facility with these and related moves during thaining session (see below) with an
unrelated problem.

Carl was met individually for 90 minutes. Duringetfirst half of the interview the
investigator introducedavabarsto the students and showed some of the basicrésatu
such as constructing a bar, colouring, breakings bawr equal and unequal parts
(vertically/horizontally), and moving bars/piecesoand the workspace within the
computer screen. Comments from the participatingesits suggested that they found the
activity enjoyable and easy to work with. The studevere given time to experiment with
Javabarsby clicking the various buttons on the screen, r@ngk questions.

Reflections on the Mappings that can be Constructed

Both the problems provide rich contexts for chifdte demonstrate the construction of
mappings. These mappings could reflect childremalyses of the parts and wholes
embedded in the given bars at different levelsoie level, one could expect children to
identify the parts as chunks without considerationsubparts or the equal size of the
subparts. That is, in Problem 1 children could $&e parts (grey and red) and both these
as being of same size. These constitute legitimmatppings between the various parts of
the bar with notions about colour and space.

There are also a number of other mappings thatrpmdéhe elucidation of part-whole
relations and their symbolic equivalents. Studdvage to reason that the given bar is a
whole, and that this whole has been divided into fqual parts. That is, students have to
recognize that the bar on the right is the samth@®ne on the left of the screen. This
relationship can be established by visual inspachiot Javabarsprovides a more exact
way to assess this. That is, students could us€dipg button to make a copy of the left-
hand bar and then align this with the right-hand Bhis action should lead them to reason
that they are working with the same whole. Secqgnstlydents have to recognize that the
right-hand bar is divided equally into four parégain, while a visual inspection could
provide an intuitive answer, we expected that sitslevould use the Parts menus to break
the bar vertically into 4 equal parts using therappgate menus in the software. This
should result in the deductions that there are fourths and the two of the fourths are
colored in grey. The answer could be 2/4 or ha®)1

While Problem 2 again involves the elucidation aftp from a whole, the reasoning
involved more chains of mappings than in the presiproblem. A visual inspection would
reveal that the blue part could be five, six oresetimes that size of the remainder of the
right-hand bar (red) leading to the conclusion thiae is 1/8' and red is 4/8 of the whole
and so on. Even in this approach students haveafothe symbols to the parts and wholes
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of the given whole bar on the left on the screenmére systematic reasoning for this
problem could involve students breaking the blug pad aligning this under the red part
in order to ascertain how many of the blue partaldionake the red part. Students have to
replicate the blue parts by using the Copy buttothe screen. Six of the blue parts should
be sufficient to make the red bar. From this peindents should be able to conclude that
the blue part constitutes one-sixth of the red, thed finally that the blue is in fact 1)Yof

the wholebar. Alternatively, they could reason that theise6/7" of the whole bar.

Results

Table 1 shows the dialogue between the researdtelarid Carl as he attempted
Problem 1. At C2 (Table 1), Carl was able to cdlyecount the number of grey parts in
Bar 1B. He could not relate this to the four pame which the whole bar is divided.

Table 1

Carl (C) - Context 1, R - Researcher

Speaker and Utterance Numbef Utterance
C1 Write the fraction for bar 1B that is shadedjiiay (difficulty in

pronouncing ‘fraction’).

R1 This is the bar 1B. Can you give an answer?
c2 Two
R2 Anything else?
C3 No

Dialogue in Table 2 shows that Carl was able tosttoct a number of mappings. At
C2, he was able to recognize the two coloured audstheir relative size. That is, there is
evidence of two types of mappings. In the firstanse, Carl is able to map the blue and
red parts with the blue and colours respectively.ws also reason spatially and map the
smaller with the blue part and red part with thgéa part of the bar. While he hesitated,
with support from the researcher, the above lewlsmappings were extended to
examining parts within parts. C13 and C15 demotestaa attempt to draw out the part-
whole relations between the blue and red parts.<bbévs Carl was validating his intuitive
understanding of the relative size of the red dod parts.

Discussion and Implications

The nature of the problems presented in this stele such that in order to respond
correctly Carl needed to map four representatiohdraxctions: part/whole relations,
language, symbols and bars (unit and partition&dleeper understanding of fractions was
required in order to ‘see’ the links among theggasentations, and the embodiment of the
part-whole relation within each representation. tTisa the integration of the different
representations constitutes a key characteristih@fquality of knowledge that supports
Carl’'s understanding and interpretation of fractiofhis feature of the knowledge base
that emphasises connectedness or organization &es brgued to facilitate better
integration and use of prior knowledge of matheosafChinnappan, 1998; Prawat, 1989;
Schoenfeld, 1992). A more structured knowledge lasdractions is also necessary for
further developments in identifying the multiplinat relation between the numerator and
denominator. For example, a recent study condubtedlack (2001) about operations
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involving fractions led her to suggest that faildcetransfer symbolic understanding of
fractions to the concept of partitioning could irdpestudents’ ability to perform

multiplication and divisions operations involvingaétions. Here one could see the
conceptual value of establishing links betweenit@ning of fractional numbers and their

symbols.
Table 2

Carl (C) - Context 2, R - Researcher

Speaker and Utterance Numbef

Utterance

[«

C1 Name two fractions that might be representethéyar 1c.

R1 Can you see bar 1c? What can you see therg®{iRrg bar 1c on the
computer screen)

Cc2 One blue skinny one and half red

R2 You are asked to write the fraction. You hawelilue skinny one as yqg
say and the red one, right?

C3 Yes

R3 Question is can you express blue as a fracfitimeared?

C4 um...

R4 Which is bigger here?

C5 The red

R5 Can you express the fractions? Do you underdtendiord fraction?

C6 To say what's bigger and do what's skinny

R6 Ok, how many of the blue will make up the red?

C7 Five

R7 Any other possibility?

Cc8 um..

R8 Remember, we can break this and move this aréodld you like to
try that yourself?

C9 | do not know what to do with the red

R9 Do you wish to break the figure like break itlanove it around?

Ci10 Break it up

R10 Now you have broken this, the blue and the Bedyou wish to take
them apart?

Ci11 Ya

R11 What do you want to do next?

C12 Break the red up

R12 Why

C13 So we know how many pieces of them there are

R13 Ok. How do you want to break the red?

C14 That way (Indicating breaking top to bottom)

R14 (R helps Carl to break up)

C15 (Clicking number 5 on the ‘Parts’ button)

R15 So you have the red one into 5 parts. Why didhyreak this into 5 part
and not say, 10 parts?

Ci16 Because to see if | was right.

2
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Overall, the child in the present study had dewetbpome understanding of fractions.
Carl could exploit the dynamic bar features progidey Javabarsin a number of
conceptually powerful ways. Firstly, Carl they aballign the partitioned bar with the unit
bar in order to make judgments about the relatize ef the partitions and produce the
correct numerical forms. He showed a degree of odniri breaking and assembling parts
to make the whole (unitizing), and interpreting tlesult in terms of fractions. This was
particularly in evidence during his solution of Biem 2. Carl could shift from one
representation (one-sixth) to another without toecimeffort. This apparently seamless
transfer among representations is indicative ofrtimistness of his fraction schemas. In
their analysis of mathematical understanding, Bhgind Halford (1995) argued that the
mapping of elements of one representation with etémin a different representation
induces cognitive load, and that one way to redbh¢e load would be to improve the
strength of the links among knowledge componenteernschema. Thus it would seem that
the robustness of Carl's schema helped him dectbassognitive load associated with the
mapping process. The reduction in cognitive loadld/@account for the ease with which he
could move across representations.

In his study of fractions strategies, Olive (2008ported that the two participating
children were able to make a whole bar given a(padf the bar (e.g. 2/7th). We see
evidence of similar actions in the present studfCad manages to use the blue parts to
construct the whole bar. While he was not explabibut the ratio between the parts,
breaking the red portion into five parts suggestinteresting line of reasoning. While the
pattern of actions reported here seem to be censistith those of Olive (2003), the
mapping analyses provide a different angle for daoterpretations of part-whole
understandings.

Behr, Harel, Post and Lesh (1992) argued that deogichildren’s understanding could
be used to make instructional decisions. While ikisa reasonable suggestion, more
qualitative data are needed on this issue. Whike tibo early to generalise on the basis of
the actions of one student, the results do seesuggest that teachers need to become
familiar with level of children’s knowledge of fraons before a software such ds/abars
could be introduced either as a learning or teartool.

Also intuitive thinking plays a key role in mathetical thinking and learning. | argue
that this constitutes a natural way for childremgason about part-whole constructs in their
understanding of fractions. While this might appteabe sufficient, as teachers we need to
emphasize other ways for children to model andttestvalidity of these representations. It
is suggested that this evaluation involves reagprand that the use of analogs for
reasoning provides an effective way to examinenttare of interpretations constructed by
children.
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