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Using advanced calculators to do mathematics changes the focus of what students need to
learn. For arithmetic number sense is important, for algebra, symbol sense. Both concepts
apply to the whole problem solving cycle. This paper is concerned with algebraic insight,
the subset of symbol sense which is needed to solve a problem already formulated
mathematically. Students need algebraic insight to enter expressions correctly, monitor the
solution process and interpret the output as conventional mathematics. A framework for
algebraic insight is described and illustrated with examples.

The increasing availability of Computer Algebra Systems has given a sense of urgency
to the question ‘If the calculator can do it, what do we need to teach?” This paper presents
a framework for looking at the mathematical thinking students need in order to ‘do
algebra’ with CAS.

Number Sense, Symbol Sense

In 1982 Wilf alerted the American Mathematical Monthly to “The disk with the college
education’. He had just spent an evening working with an early CAS and in his short
article he raised a number of important questions which we have yet to answer. In
particular he asked how the content of courses should be affected and whether we will
“take the advice that we have been dispensing to teachers of the primary grades: that they
should teach more of concepts and less of mechanics?” (p. 7) Since then it has commonly
been stated that the computational capabilities of technology should change the emphasis
of teaching in mathematics classrooms. While students struggle to manipulate numerical
and algebraic symbols CAS can perform these tasks accurately and quickly. However as
Fey (1990) pointed out

Even if machines take over the bulk of computation, it remains important for users of those
machines to plan correct operations and to interpret results intelligently. Planning calculations
requires sound understanding of the meaning of operations — of the characteristics of actions that
corresponds to various arithmetic operations. Interpretation of results requires judgement about the
likelihood that the machine output is correct or that an error may have been made in data entry,
choice of operations, or machine performance. (p. 79)

For arithmetic, this understanding and ability to both plan and interpret has been
termed number sense. This concept of ‘number sense’, needed to work successfully in
partnership with scientific calculators, has been discussed and written about since the late
1980’s and is well described by Mcintosh, Reys and Reys (1992) For algebra, a logical
extension of number sense is symbol sense. Some keys themes for teaching symbol sense
were suggested by Fey (1990) and Arcarvi (1994). Arcarvi, reflecting on his teaching
experience, suggested a list of attributes that are indicative of symbol sense. His list covers
the thinking involved at all stages of mathematical problem solving including formulating
the problem and interpreting the solution. CAS do not assist at all stages of problem
solving, they only perform algorithmic processes. The contribution of CAS is in the
mathematical solution of a formulated problem. The subset of symbol sense that enables
this partnership to be effective is what we call algebraic insight. It is the algebraic
knowledge and understanding which allows a student to correctly enter expressions into a
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CAS, efficiently scan the working and results for possible errors, and interpret the output
as conventional mathematics. Figure 1 shows this relationship, with symbol sense applying
generally and algebraic insight applying only to solving the mathematical problem.
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Figure 1. The place of symbol sense and algebraic insight in mathematical problem solving.

Algebraic Insight: A Framework

Algebraic insight is summarised in the framework presented in Table 1. First it should
be emphasised that this is a working framework, a basis from which to plan, assess or
reflect on students’ algebraic insight. The elements of each aspect of algebraic insight can
be used as the springboard for developing test items or examples but a particular test item
may involve more than one element of algebraic insight. The framework was developed in
response to the literature and the first author’s experience of teaching with CAS (Pierce &
Kendal, 1999; Pierce & Stacey, in press). It is an attempt to make an analysis of what it is
that ‘expert’” mathematicians do when they monitor mathematical working. Algebraic
insight does not require carrying out manipulations and calculations of more than one step
since this would defeat the purpose of using CAS.

Algebraic insight may be divided into two aspects. This is a logical division,
considering first the insight needed working within a symbolic representation, and then the
insight needed to work with and gained from linking the symbolic to graphic and numeric
representations. The framework is restricted to these three representations since this is
what CAS offer. The third possible link of information between the numeric and graphic
representations is not discussed because our focus in on symbolic algebra.

Each aspect of algebraic insight has been divided into key elements and the common
instances indicate when these abilities may be demonstrated. While the aspects and their
elements have general application the common instances, through which algebraic insight
is demonstrated, are specific to both stage and topic and the list of common instances is not
exhaustive.

The framework is explained and illustrated below using common instances from a
study undertaken in 1999, with undergraduate students in an ‘introduction to calculus’
course. Two instruments were developed to assess algebraic insight: a quiz and an
interview. Details of the quiz were similar to those described by Ball, Stacey & Pierce
(2001). At individual interviews, which were audiotaped, students were given a series of
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five questions to work ‘aloud’. Examples (see Figures 2, 3 and 4) and results from the quiz
and interview (Figure 5) will be also discussed in relation to each of the elements of the
framework.

Tablel
Algebraic Insight Framework

Aspects Elements Common Instances
1. Algebraic 1.1 Recognition of 1.1.1 Know meaning of symbols
expectation conventions and basic  1.1.2 Know order of operations
properties 1.1.3 Know properties of operations
1.2 Identification of 1.2.1 Identify objects
structure 1.2.2 ldentify strategic groups of
components

1.2.3 Recognise simple factors

1.3 ldentification of key 1.3.1 Identify form
features 1.3.2 Identify dominant term
1.3.3 Link form to solution type

2. Ability to link 2.1 Linking of symbolic 2.1.1 Link form to shape

representations and graphic 2.1.2 Link key features to likely
representations position
2.1.3 Link key features to intercepts and
asymptotes
2.2 Linking of symbolic 2.2.1 Link number patterns or type to
and numeric form
representations 2.2.2 Link key features to suitable

increment for table
2.2.3 Link key features to critical
intervals of table

Aspects of Algebraic Insight: 1. Algebraic Expectation

The term algebraic expectation is used here to name the thinking process which takes
place when an experienced mathematician ponders the result they expect to obtain as the
outcome of some algebraic process. Skill in algebraic expectation will allow a student to
scan CAS output for likely errors, recognise equivalent expressions and make sense of long
complicated results. It parallels arithmetic estimation which may involve estimating that
the answer to 6283 ~ 4816 will be in millions; algebraic expectation may involve expecting
that @- x+x?)x*- x* +27x- 63) will be a polynomial of degree six. Algebraic

expectation does not involve producing an approximate solution but rather noticing
conventions, structure and key features of an expression that determine features which may
be expected in the solution. For this reason we have chosen the word expectation rather
than estimation. These skills form the elements of algebraic expectation illustrated in turn
below.
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1.1 Recognition of Conventions and Basic Properties

Students must recognise the conventional meaning of symbols used in algebra (1.1.1).
This involves both operators and ‘letters’. While the operators +, -, and =~ should be
familiar from arithmetic the convention in pen and paper algebra of implicit multiplication,
where xy means x times y, is a source of confusion. There are further issues here that relate
to the use of CAS. The required syntax is CAS specific but since CAS allow variable
names to have more than one letter a distinction must be made between a variable ab and
a*b.

Letters are used in a number of ways in algebra. For example a classic quadratic
function is commonly expressed as y =ax” +bx +c. This requires a student to recognise

that a, b and c are parameters while x and y are variables, two different meaning for letters
in one statement. Students’ understanding, or as MacGregor and Stacey (1997) report often
misunderstanding, of the meaning of letters in mathematics is important for algebra with or
without the use of CAS. One particularly interesting example from the interviews was
shown in the work of Henry who followed the structure for item 4 (Fig 4) with numbers
but when faced with part (ii) said confidently that the x values would be b, d and f since b
is even (drawing on alphabetical order). Henry did not understand the meaning of letters as
variables. The use of CAS raises some specific issues for understanding the meaning of
symbols and their use in defining variables and parameters within the program. For
example: variable names may be short words not just single letters and names, representing
parameters, may be assigned specific values that will be used by the program instead of the
letter until the assignment is changed or cancelled.

CAS programs can vary in the way they interpret syntax but most consider bracketed
expressions first then carry out operations working from left to right. It is therefore
necessary to use brackets to make the meaning of expressions clear and ensure that
operations are carried out in the order expected. To ensure the conventional order of
operations (1.1.2.) to the expression a+p, g it may have to be entered as a+(p/q).

As well as the meaning of symbols and order of operations students need to recognise
the basic properties of operations (1.1.3) for example that x Gy ? y i x (question 4, figure

2) or that some operations are distributive others are not. This property is a common source
of confusion for students that causes incorrect algebraic expectations. For example

students learn that a(b+c) = ab+ac and then incorrectly expect that (a + b)2 =a’ +b’,

Knowing the meaning of symbols, order of operations and properties of operations are
all common instances when students demonstrate the first element of algebraic expectation.
This ability is especially important for entering and interpreting CAS syntax. The second
element of algebraic expectation is the identification of structure. One of the claims made
for the use of CAS is that it allows students to tackle more realistic problems involving
complicated expressions. Identifying structure helps students to check and interpret such
expressions.

1.2 Identification of Structure

a(x+1)° +b(x +1)°
(x+1)

the first level of structure in this expression that this is a division with a numerator and

denominator. Viewed at another level (x +1) can be identified as an object which is
common to each term of the expression. Recognising structure (1.2.1) can mean seeing at a

Consider the structure of the expression . The vinculum indicates
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glance that 2x+1 is a common factor, for (2x+1) - 3x(2x+1) but looking at

(2x +1) - 3x(2x +5) and noting that the bracketed objects differ.

A further common instance of identification of structure is demonstrated when students
identify strategic groups of components. This helps the recognition of equivalent

expressions, for example, sin® x+ 2sin xcos x +cos” x may be strategically grouped in two

ways, as —— and hence recognised as sin (2x)+1 or viewed

as being of the form of a perfect square and so written as (sin X+cos x)2 :

Identifying objects (1.2.1), strategic groupings (1.2.2), and simple factors (1.2.3) are all
ways in which students can demonstrate an identification of structure in an expression. A
structural view of expressions will inform algebraic expectation as will the third element,
the identification of key features. Key features, for example may alert the student to the
“family’ to which an expression belongs and hence the properties to expect.

1.3 Identification of Key Features

For functions identification of key features may lead to expectation about number of
solutions, solution type, number of maxima and minima, domain and range. ldentifying
form (1.3.1) for functions and hence applying associated knowledge, can mean noting that
2 + e* is exponential and that e +e*- 2 is a quadratic in €*. Identifying the dominant

term (1.3.2), means for example, noting that 3 is the highest power of the polynomial, x°
+5x + 1. This indicates that there will be at least one and at most three distinct solutions for
f(x) = 0. Key features provide information on which to base expectations or suspect errors.
In question 10, figure 2, for example, identifying the key feature of the highest power of x
in both expressions (x> for the student, x* for the text book) immediately signals that there
Is an error here; these expression are not equivalent.

4. student Textbook 10. Student Textbook

- ¥ [af+p#lfa-plix+pl

Figure 2. Sample questions from quick quiz assessing recognition of equivalence.

Aspects of Algebraic Insight: 2. Ability to Link Representations

While recognising that the meaning of symbols, identifying structure and key features
provide a great deal of information on which to base algebraic expectations more algebraic
insight can be gained by linking this algebraic information to the corresponding graphical
and numeric representations of functions. When using CAS, students can swap between
algebraic, numeric and graphical windows at the press of buttons. This may be used to
advantage in examining students’ algebraic insight. Fey (1990) noted that understanding of
algebra would be demonstrated by students’ ability to move between algebraic, numeric
and graphical representations of expressions. Students would demonstrate algebraic insight
by being able to make estimates, have a rough idea what a graph of a function may or may
not look like, have some idea of the sort of range of values that might be expected for a
given domain. To show algebraic insight a student would, for example, not be expected to
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complete a least squares linear regression but to recognise that a set of data points might be
modelled by a linear function. They would be looking for a function or class of functions
to link between the dependent and independent variables. Similarly a student would
immediately recognise a quadratic function rule as being represented by a parabolic graph
and as Arcavi (1994) suggests the student may realise that each representation is equally
valid and that changing representations may help them make progress in solving a
problem.

2.1 Linking of Symbolic and Graphic Representations

Linking symbolic and graphic representations of functions involves linking, form to
shape and key features to likely position, intercepts and asymptotes. Linking of shape to
form (2.1.1) is shown when a student looks at a function like p(t) =5t2 +3t +1054 +sin(2pt +5)

and recognises that this is made up of a quadratic plus a sine function so its graph will look
like a sine graph “bent’ up to follow the curve of the quadratic. In general, identifying form
gives enough information about a graph to be able to draw the basic shape ‘in the air’ with
a hand wave.

In the individual interviews, after a glance at the quadratic function in question 5,
figure 4, each student responded with a U-shaped wave and identified —21 as a key feature
(2.1.3) that indicated the y-intercept. Henry was typical of the group for whom this style of
question was familiar from school mathematics. He answered quickly and correctly by
identifying key features, in this case the coefficients 1, 4, -21 and working with these.

In question 21, Figure 3, for example, the student was expected to either identify form
(2.1.1) or identify key features (2.1.2) by noting that the graph has 3 x-intercepts, or
identifying that it has two turning points and so will be at least cubic. This makes
alternative (d) the only possible choice and also demonstrates that algebraic insight could
be shown here through several common instances.

17 21. The graph of ore ofthe
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Figure 3. Sample questions from quick quiz assessing linking of representations

Algebraic insight will also provide information about the numeric representation of
functions and provide a guide to the increment and interval that will reveal critical aspects
of a function.

2.2 Linking of Symbolic and Numeric Representations

The ability to link symbolic and numeric representations will be shown when students
link number patterns to form (2.2.1) and link key features to suitable increments (2.2.2)
and critical values (2.2.3) of tables. Patterns in tables such as equal differences or equal
ratios alert the mathematician to the likely form of the algebraic representation of these
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functions. In question 17, figure 3 the student might scan the relationship between x and
f(x) and notice the 2 maps to 4, 3 to 9, x to x%. Alternatively the student might recognise
that the f(x) values are all squares.

Algebraic expectation will help the student choose a suitable increment for the
independent variable. When students work by hand they commonly choose an integer
increment and an interval around zero and so miss important features of the function. If,
for example, r(q) =sin(2pq) using an integer increment for a table of values will result in

0 for each r(q), not very helpful! The key feature to identify here is the 2p factor since
any angle that is a multiple of 2p has a sine of zero. Recognition that the function will have
repeating cycles of values suggests that a detailed representation of one cycle may give
useful information about the function. CAS make using any increment or interval equally

easy so with algebraic insight students can use this facility to gain more understanding of
the salient aspects of a function.

4. I1f T(x, ¥4, 0,1) generates the table x_f(x) 5. g(x)=x? +4x-21
00 What parts of this rule immediately give you
11 clues to the shape and position of a graph of
2 4 this function? Explain.
39 Rewrite this rule so that the x intercepts of its
and T(x, X, 0, 2) generates x_f(x) graph can be easily seen.
0 0 Rewrite this rule so that the coordinates of the
2 4 minimum point of its graph can be can be easily
4 16 seen.
6 36

what will be generated by
T(x,3x%,01) T(x, X%, 0, b)
T(X, x+a,2,1) T(y,y% 0, 2)

Figure 4. Sample questions from interview assessing multiple elements of algebraic insight.

Strengths and Weaknesses

This section presents a very brief overview of one of the ways in which we are using
the algebraic insight framework to understand students’ strengths and weaknesses. The
overall class results for the quick quiz (pre and late course in the 1999 study) are shown in
figure 5. The pre-course results reflect the students’ school mathematics experience. There
were clear weaknesses in their backgrounds especially in identification of structure (1.2)
and key features (1.3) and working with tables (2.2). After the course (taught with CAS)
there was noticeable improvement in all elements with most change in identification of key
features (1.3) which was emphasised in the teaching. Targeted, guided exploration with
CAS allowed students to look at key features (1.3) in many examples using the three
representations. Similar exercises, using only CAS algebra, focused on structure (1.2) in
algebraic fractions and composite functions but these produced more limited improvement.

Overall the interviews confirmed the findings of the quiz but they uncovered further
examples of lack of algebraic insight. It was interesting to see, for example, that Henry
could have such fundamental gaps in algebraic expectation (specifically 1.1.1 meaning of
symbols) and yet be able to link representations. It was clear that he had been taught how
to identify the key features that link quadratic functions and parabolas. Some elements and
common instances of algebraic insight are clearly harder to learn than others. This
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framework provides a structure from which to identify these and so sets the challenge of
developing more effective teaching strategies for these skills needed for working with
CAS.
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Figure 5. Mean percentage score (pre and post course) for each framework element.

Conclusion

The algebraic insight framework provides a helpful structure for examining the
thinking required by students using CAS. The list of elements defines areas to be given
attention in teaching or assessment. The framework enabled the test items to be grouped
usefully to reveal strengths and weaknesses in students’ algebraic insight.
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